emacs greek input method
Kostas Zorbadelos
kzorba at otenet.gr
Fri Aug 26 12:46:55 EEST 2005
On Fri, Aug 26, 2005 at 12:27:41PM +0300, Antonios Christofides wrote:
> Αν χρησιμοποιήσω greek input method σε emacs, θέλει τον τόνο μετά το
> γράμμα (και άλλες ατέλειες). Υπάρχει εναλλακτική input method να
> κατεβάσω ή άλλο workaround εκτός απ' το να φτιάξω τη δικιά μου;
>
> --
> Antonios Christofides
> +30-2661020814
>
Find attached to tropopoiimeno input method pou douleyei me tono prin
to gramma. Prokeitai gia poly mikri allagi sto default.
Vale to sto thesi tou paliou greek.el (px sto debian einai sto
/usr/share/emacs/21.4/leim/quail/greek.el) kai kanto byte-compile me
M-x byte-compile-file
>
> --
> linux-greek-users mailing list -- http://lists.hellug.gr
>
--
Kostas Zorbadelos
m at il contact: kzorba (at) otenet.gr
Out there in the darkness, out there in the night
out there in the starlight, one soul burns brighter
than a thousand suns.
-------------- next part --------------
;;; greek.el --- Quail package for inputting Greek -*-coding: iso-2022-7bit-*-
;; Copyright (C) 1997, 2001 Electrotechnical Laboratory, JAPAN.
;; Licensed to the Free Software Foundation.
;; Keywords: multilingual, input method, Greek
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Commentary:
;;; Code:
(require 'quail)
(quail-define-package
"greek-jis" "Greek" "$B&8(B" nil
"$B&%&K&K&G&M&I&J&A(B: Greek keyboard layout (JIS X0208.1983)
The layout is same as greek, but uses JIS characters.
Sorry, accents and terminal sigma are not supported in JIS."
nil t t t t nil nil nil nil nil t)
(quail-define-rules
("1" ?$B#1(B)
("2" ?$B#2(B)
("3" ?$B#3(B)
("4" ?$B#4(B)
("5" ?$B#5(B)
("6" ?$B#6(B)
("7" ?$B#7(B)
("8" ?$B#8(B)
("9" ?$B#9(B)
("0" ?$B#0(B)
("-" ?$B!](B)
("=" ?$B!a(B)
("`" ?$B!F(B)
("q" ?$B!&(B)
("w" ?$B&R(B)
("e" ?$B&E(B)
("r" ?$B&Q(B)
("t" ?$B&S(B)
("y" ?$B&T(B)
("u" ?$B&H(B)
("i" ?$B&I(B)
("o" ?$B&O(B)
("p" ?$B&P(B)
("[" ?\$B!N(B)
("]" ?\$B!O(B)
("a" ?$B&A(B)
("s" ?$B&R(B)
("d" ?$B&D(B)
("f" ?$B&U(B)
("g" ?$B&C(B)
("h" ?$B&G(B)
("j" ?$B&N(B)
("k" ?$B&J(B)
("l" ?$B&K(B)
(";" ?$B!G(B)
("'" ?$B!G(B)
("\\" ?$B!@(B)
("z" ?$B&F(B)
("x" ?$B&V(B)
("c" ?$B&W(B)
("v" ?$B&X(B)
("b" ?$B&B(B)
("n" ?$B&M(B)
("m" ?$B&L(B)
("," ?, )
("." ?. )
("/" ?$B!?(B)
("!" ?$B!*(B)
("@" ?$B!w(B)
("#" ?$B!t(B)
("$" ?$B!t(B)
("%" ?$B!s(B)
("^" ?$B!0(B)
("&" ?$B!u(B)
("*" ?$B!v(B)
("(" ?\$B!J(B)
(")" ?\$B!K(B)
("_" ?$B!2(B)
("+" ?$B!\(B)
("~" ?$B!1(B)
("Q" ?$B!](B)
("W" ?$B&2(B)
("E" ?$B&%(B)
("R" ?$B&1(B)
("T" ?$B&3(B)
("Y" ?$B&4(B)
("U" ?$B&((B)
("I" ?$B&)(B)
("O" ?$B&/(B)
("P" ?$B&1(B)
("{" ?\$B!P(B)
("}" ?\$B!Q(B)
("A" ?$B&!(B)
("S" ?$B&2(B)
("D" ?$B&$(B)
("F" ?$B&5(B)
("G" ?$B&#(B)
("H" ?$B&'(B)
("J" ?$B&.(B)
("K" ?$B&*(B)
("L" ?$B&+(B)
(":" ?$B!I(B)
("\"" ?$B!I(B)
("|" ?$B!C(B)
("Z" ?$B&&(B)
("X" ?$B&6(B)
("C" ?$B&7(B)
("V" ?$B&8(B)
("B" ?$B&"(B)
("N" ?$B&-(B)
("M" ?$B&,(B)
("<" ?$B!((B)
(">" ?$B!'(B)
("?" ?$B!)(B))
;;
(quail-define-package "greek-mizuochi" "Greek" "CG" t "
The Mizuochi input method for Classical Greek using mule-unicode-0100-24ff.
-------------------------------------
character capital small
-------------------------------------
alpha A a
beta B b
gamma G g
delta D d
epsilon E e
zeta Z z
eta H h
theta Q q
iota I i
kappa K k
lamda L l
mu M m
nu N n
xi X x
omicron O o
pi P p
rho R r
sigma S s
final sigma j
tau T t
upsilon U u
phi F f
chi C c
psi Y y
omega W w
-------------------------------------
sampi !
digamma #
stigma $
koppa & %
-------------------------------------
------------------------
mark key
------------------------
ypogegrammeni J
psili ' or v
dasia ` or V
oxia /
varia ?
perispomeni \\ or ^
dialytika \"
ano teleia :
erotimatiko ;
----------------------
"
nil t t nil nil nil nil nil nil nil t)
(quail-define-rules
("!" ?$,1'a(B) ; sampi
("#" ?$,1'\(B) ; DIGAMMA
("$" ?$,1'[(B) ; stigma
("%" ?$,1'_(B) ; koppa
("&" ?$,1'^(B) ; KOPPA
("'" ?$,1q(B) ("v" ?$,1q(B) ; psili
("/" ?$,1r](B) ; oxia
(":" ?$,1&g(B) ; ano teleia
(";" ?$,1&^(B) ; erotimatiko
("\"" ?,A((B) ; dialytika
("A" ?$,1&q(B)
("B" ?$,1&r(B)
("C" ?$,1''(B)
("D" ?$,1&t(B)
("E" ?$,1&u(B)
("F" ?$,1'&(B)
("G" ?$,1&s(B)
("H" ?$,1&w(B)
("I" ?$,1&y(B)
("wJ" ?$,1rS(B)
("K" ?$,1&z(B)
("L" ?$,1&{(B)
("M" ?$,1&|(B)
("N" ?$,1&}(B)
("O" ?$,1&(B)
("P" ?$,1' (B)
("Q" ?$,1&x(B)
("R" ?$,1'!(B)
("S" ?$,1'#(B)
("T" ?$,1'$(B)
("U" ?$,1'%(B)
("hJ" ?$,1r#(B)
("W" ?$,1')(B)
("X" ?$,1&~(B)
("Y" ?$,1'((B)
("Z" ?$,1&v(B)
("?" ?$,1rO(B) ; varia
("\\" ?$,1r (B) ("^" ?$,1r (B) ; perispomeni
("`" ?$,1r^(B) ("V" ?$,1r^(B) ; dasia
("a" ?$,1'1(B)
("b" ?$,1'2(B)
("c" ?$,1'G(B)
("d" ?$,1'4(B)
("e" ?$,1'5(B)
("f" ?$,1'F(B)
("g" ?$,1'3(B)
("h" ?$,1'7(B)
("i" ?$,1'9(B)
("j" ?$,1'B(B)
("k" ?$,1':(B)
("l" ?$,1';(B)
("m" ?$,1'<(B)
("n" ?$,1'=(B)
("o" ?$,1'?(B)
("p" ?$,1'@(B)
("q" ?$,1'8(B)
("r" ?$,1'A(B)
("s" ?$,1'C(B)
("t" ?$,1'D(B)
("u" ?$,1'E(B)
("aJ" ?$,1qs(B)
("w" ?$,1'I(B)
("x" ?$,1'>(B)
("y" ?$,1'H(B)
("z" ?$,1'6(B)
("i`" ?$,1pQ(B) ("iV" ?$,1pQ(B)
("i'" ?$,1pP(B) ("iv" ?$,1pP(B)
("i/" ?$,1q7(B)
("i`/" ?$,1pU(B) ("iV/" ?$,1pU(B) ("i/`" ?$,1pU(B) ("i/V" ?$,1pU(B)
("i'/" ?$,1pT(B) ("iv/" ?$,1pT(B) ("i/'" ?$,1pT(B) ("i/v" ?$,1pT(B)
("i?" ?$,1q6(B)
("i`?" ?$,1pS(B) ("iV?" ?$,1pS(B) ("i?`" ?$,1pS(B) ("i?V" ?$,1pS(B)
("i'?" ?$,1pR(B) ("iv?" ?$,1pR(B) ("i?'" ?$,1pR(B) ("i?v" ?$,1pR(B)
("i^" ?$,1r6(B) ("i\\" ?$,1r6(B)
("i`^" ?$,1pW(B) ("i`\\" ?$,1pW(B) ("iV^" ?$,1pW(B) ("iV\\" ?$,1pW(B)
("i^`" ?$,1pW(B) ("i\\`" ?$,1pW(B) ("i^V" ?$,1pW(B) ("i\\V" ?$,1pW(B)
("i'^" ?$,1pV(B) ("i'\\" ?$,1pV(B) ("iv^" ?$,1pV(B) ("iv\\" ?$,1pV(B)
("i^'" ?$,1pV(B) ("i\\'" ?$,1pV(B) ("i^v" ?$,1pV(B) ("i\\v" ?$,1pV(B)
("i\"" ?$,1'J(B)
("i/\"" ?$,1r3(B) ("i\"/" ?$,1r3(B)
("i?\"" ?$,1r2(B) ("i\"?" ?$,1r2(B)
("^`" ?$,1r?(B) ("^V" ?$,1r?(B) ("\\`" ?$,1r?(B) ("\\V" ?$,1r?(B)
("`^" ?$,1r?(B) ("V^" ?$,1r?(B) ("`\\" ?$,1r?(B) ("V\\" ?$,1r?(B)
("^'" ?$,1r/(B) ("^v" ?$,1r/(B) ("\\'" ?$,1r/(B) ("\\v" ?$,1r/(B)
("'^" ?$,1r/(B) ("v^" ?$,1r/(B) ("'\\" ?$,1r/(B) ("v\\" ?$,1r/(B)
("/`" ?$,1r>(B) ("/V" ?$,1r>(B) ("`/" ?$,1r>(B) ("V/" ?$,1r>(B)
("/'" ?$,1r.(B) ("/v" ?$,1r.(B) ("'/" ?$,1r.(B) ("v/" ?$,1r.(B)
("?`" ?$,1r=(B) ("?V" ?$,1r=(B) ("`?" ?$,1r=(B) ("V?" ?$,1r=(B)
("?'" ?$,1r-(B) ("?v" ?$,1r-(B) ("'?" ?$,1r-(B) ("v?" ?$,1r-(B)
("\"/" ?$,1rN(B) ("/\"" ?$,1rN(B)
("\"?" ?$,1rM(B) ("?\"" ?$,1rM(B)
("e`" ?$,1p1(B) ("eV" ?$,1p1(B)
("e'" ?$,1p0(B) ("ev" ?$,1p0(B)
("e/" ?$,1q3(B)
("e/`" ?$,1p5(B) ("e/V" ?$,1p5(B) ("e`/" ?$,1p5(B) ("eV/" ?$,1p5(B)
("e/'" ?$,1p4(B) ("e/v" ?$,1p4(B) ("e'/" ?$,1p4(B) ("ev/" ?$,1p4(B)
("e?" ?$,1q2(B)
("e?`" ?$,1p3(B) ("e?V" ?$,1p3(B) ("e`?" ?$,1p3(B) ("eV?" ?$,1p3(B)
("e?'" ?$,1p2(B) ("e?v" ?$,1p2(B) ("e'?" ?$,1p2(B) ("ev?" ?$,1p2(B)
("a`" ?$,1p!(B) ("aV" ?$,1p!(B)
("a'" ?$,1p (B) ("av" ?$,1p (B)
("a/" ?$,1q1(B)
("a/`" ?$,1p%(B) ("a/V" ?$,1p%(B) ("a`/" ?$,1p%(B) ("aV/" ?$,1p%(B)
("a/'" ?$,1p$(B) ("a/v" ?$,1p$(B) ("a'/" ?$,1p$(B) ("av/" ?$,1p$(B)
("a?" ?$,1q0(B)
("a?`" ?$,1p#(B) ("a?V" ?$,1p#(B) ("a`?" ?$,1p#(B) ("aV?" ?$,1p#(B)
("a?'" ?$,1p"(B) ("a?v" ?$,1p"(B) ("a'?" ?$,1p"(B) ("av?" ?$,1p"(B)
("a^" ?$,1qv(B) ("a\\" ?$,1qv(B)
("a^`" ?$,1p'(B) ("a^V" ?$,1p'(B) ("a\\`" ?$,1p'(B) ("a\\V" ?$,1p'(B)
("a`^" ?$,1p'(B) ("aV^" ?$,1p'(B) ("a`\\" ?$,1p'(B) ("aV\\" ?$,1p'(B)
("a^'" ?$,1p&(B) ("a^v" ?$,1p&(B) ("a\\'" ?$,1p&(B) ("a\\v" ?$,1p&(B)
("a'^" ?$,1p&(B) ("av^" ?$,1p&(B) ("a'\\" ?$,1p&(B) ("av\\" ?$,1p&(B)
("aJ`" ?$,1qA(B) ("aJV" ?$,1qA(B)
("aJ'" ?$,1q@(B) ("aJv" ?$,1q@(B)
("aJ/" ?$,1qt(B)
("aJ/`" ?$,1qE(B) ("aJ/V" ?$,1qE(B) ("aJ`/" ?$,1qE(B) ("aJV/" ?$,1qE(B)
("aJ/'" ?$,1qD(B) ("aJ/v" ?$,1qD(B) ("aJ'/" ?$,1qD(B) ("aJv/" ?$,1qD(B)
("aJ?" ?$,1qr(B)
("aJ?`" ?$,1qC(B) ("aJ?V" ?$,1qC(B) ("aJ`?" ?$,1qC(B) ("aJV?" ?$,1qC(B)
("aJ?'" ?$,1qB(B) ("aJ?v" ?$,1qB(B) ("aJ'?" ?$,1qB(B) ("aJv?" ?$,1qB(B)
("aJ^" ?$,1qw(B) ("aJ\\" ?$,1qw(B)
("aJ^`" ?$,1qG(B) ("aJ^V" ?$,1qG(B) ("aJ\\`" ?$,1qG(B) ("aJ\\V" ?$,1qG(B)
("aJ`^" ?$,1qG(B) ("aJV^" ?$,1qG(B) ("aJ`\\" ?$,1qG(B) ("aJV\\" ?$,1qG(B)
("aJ^'" ?$,1qF(B) ("aJ^v" ?$,1qF(B) ("aJ\\'" ?$,1qF(B) ("aJ\\v" ?$,1qF(B)
("aJ'^" ?$,1qF(B) ("aJv^" ?$,1qF(B) ("aJ'\\" ?$,1qF(B) ("aJv\\" ?$,1qF(B)
("r`" ?$,1rE(B) ("rV" ?$,1rE(B)
("r'" ?$,1rD(B) ("rv" ?$,1rD(B)
("h`" ?$,1pA(B) ("hV" ?$,1pA(B)
("h'" ?$,1p@(B) ("hv" ?$,1p@(B)
("h/" ?$,1q5(B)
("h/`" ?$,1pE(B) ("h/V" ?$,1pE(B) ("h`/" ?$,1pE(B) ("hV/" ?$,1pE(B)
("h/'" ?$,1pD(B) ("h/v" ?$,1pD(B) ("h'/" ?$,1pD(B) ("hv/" ?$,1pD(B)
("h?" ?$,1q4(B)
("h?`" ?$,1pC(B) ("h?V" ?$,1pC(B) ("h`?" ?$,1pC(B) ("hV?" ?$,1pC(B)
("h?'" ?$,1pB(B) ("h?v" ?$,1pB(B) ("h'?" ?$,1pB(B) ("hv?" ?$,1pB(B)
("h^" ?$,1r&(B) ("h\\" ?$,1r&(B)
("h^`" ?$,1pG(B) ("h^V" ?$,1pG(B) ("h\\`" ?$,1pG(B) ("h\\V" ?$,1pG(B)
("h`^" ?$,1pG(B) ("h`\\" ?$,1pG(B) ("hV^" ?$,1pG(B) ("hV\\" ?$,1pG(B)
("h^'" ?$,1pF(B) ("h^v" ?$,1pF(B) ("h\\'" ?$,1pF(B) ("h\\v" ?$,1pF(B)
("h'^" ?$,1pF(B) ("h'\\" ?$,1pF(B) ("hv^" ?$,1pF(B) ("hv\\" ?$,1pF(B)
("J" ?$,1&Z(B) ; ypogegrammeni
("hJ`" ?$,1qQ(B) ("hJV" ?$,1qQ(B)
("hJ'" ?$,1qP(B) ("hJv" ?$,1qP(B)
("hJ/" ?$,1r$(B)
("hJ`/" ?$,1qU(B) ("hJV/" ?$,1qU(B) ("hJ/`" ?$,1qU(B) ("hJ/V" ?$,1qU(B)
("hJ'/" ?$,1qT(B) ("hJv/" ?$,1qT(B) ("hJ/'" ?$,1qT(B) ("hJ/v" ?$,1qT(B)
("hJ?" ?$,1r"(B)
("hJ`?" ?$,1qS(B) ("hJV?" ?$,1qS(B) ("hJ?`" ?$,1qS(B) ("hJ?V" ?$,1qS(B)
("hJ'?" ?$,1qR(B) ("hJv?" ?$,1qR(B) ("hJ?'" ?$,1qR(B) ("hJ?v" ?$,1qR(B)
("hJ^" ?$,1r'(B) ("hJ\\" ?$,1r'(B)
("hJ`^" ?$,1qW(B) ("hJ`\\" ?$,1qW(B) ("hJV^" ?$,1qW(B) ("hJV\\" ?$,1qW(B)
("hJ^`" ?$,1qW(B) ("hJ\\`" ?$,1qW(B) ("hJ^V" ?$,1qW(B) ("hJ\\V" ?$,1qW(B)
("hJ'^" ?$,1qV(B) ("hJ'\\" ?$,1qV(B) ("hJv^" ?$,1qV(B) ("hJv\\" ?$,1qV(B)
("hJ^'" ?$,1qV(B) ("hJ\\'" ?$,1qV(B) ("hJ^v" ?$,1qV(B) ("hJ\\v" ?$,1qV(B)
("o`" ?$,1pa(B) ("oV" ?$,1pa(B)
("o'" ?$,1p`(B) ("ov" ?$,1p`(B)
("o/" ?$,1q9(B)
("o/`" ?$,1pe(B) ("o/V" ?$,1pe(B) ("o`/" ?$,1pe(B) ("oV/" ?$,1pe(B)
("o/'" ?$,1pd(B) ("o/v" ?$,1pd(B) ("o'/" ?$,1pd(B) ("ov/" ?$,1pd(B)
("o?" ?$,1q8(B)
("o?`" ?$,1pc(B) ("o?V" ?$,1pc(B) ("o`?" ?$,1pc(B) ("oV?" ?$,1pc(B)
("o?'" ?$,1pb(B) ("o?v" ?$,1pb(B) ("o'?" ?$,1pb(B) ("ov?" ?$,1pb(B)
("u`" ?$,1pq(B) ("uV" ?$,1pq(B)
("u'" ?$,1pp(B) ("uv" ?$,1pp(B)
("u/" ?$,1q;(B)
("u/`" ?$,1pu(B) ("u/V" ?$,1pu(B) ("u`/" ?$,1pu(B) ("uV/" ?$,1pu(B)
("u/'" ?$,1pt(B) ("u/v" ?$,1pt(B) ("u'/" ?$,1pt(B) ("uv/" ?$,1pt(B)
("u?" ?$,1q:(B)
("u?`" ?$,1ps(B) ("u?V" ?$,1ps(B) ("u`?" ?$,1ps(B) ("uV?" ?$,1ps(B)
("u?'" ?$,1pr(B) ("u?v" ?$,1pr(B) ("u'?" ?$,1pr(B) ("uv?" ?$,1pr(B)
("u^" ?$,1rF(B) ("u\\" ?$,1rF(B)
("u^`" ?$,1pw(B) ("u^V" ?$,1pw(B) ("u\\`" ?$,1pw(B) ("u\\V" ?$,1pw(B)
("u`^" ?$,1pw(B) ("uV^" ?$,1pw(B) ("u`\\" ?$,1pw(B) ("uV\\" ?$,1pw(B)
("u^'" ?$,1pv(B) ("u^v" ?$,1pv(B) ("u\\'" ?$,1pv(B) ("u\\v" ?$,1pv(B)
("u'^" ?$,1pv(B) ("uv^" ?$,1pv(B) ("u'\\" ?$,1pv(B) ("uv\\" ?$,1pv(B)
("u\"" ?$,1'K(B)
("u\"/" ?$,1rC(B) ("u/\"" ?$,1rC(B)
("u\"?" ?$,1rB(B) ("u?\"" ?$,1rB(B)
("w`" ?$,1q!(B) ("wV" ?$,1q!(B)
("w'" ?$,1q (B) ("wv" ?$,1q (B)
("w/" ?$,1q=(B)
("w/`" ?$,1q%(B) ("w/V" ?$,1q%(B) ("w`/" ?$,1q%(B) ("wV/" ?$,1q%(B)
("w/'" ?$,1q$(B) ("w/v" ?$,1q$(B) ("w'/" ?$,1q$(B) ("wv/" ?$,1q$(B)
("w?" ?$,1q<(B)
("w?`" ?$,1q#(B) ("w?V" ?$,1q#(B) ("w`?" ?$,1q#(B) ("wV?" ?$,1q#(B)
("w?'" ?$,1q"(B) ("w?v" ?$,1q"(B) ("w'?" ?$,1q"(B) ("wv?" ?$,1q"(B)
("w^" ?$,1rV(B) ("w\\" ?$,1rV(B)
("w^`" ?$,1q'(B) ("w^V" ?$,1q'(B) ("w\\`" ?$,1q'(B) ("w\\V" ?$,1q'(B)
("w`^" ?$,1q'(B) ("wV^" ?$,1q'(B) ("w`\\" ?$,1q'(B) ("wV\\" ?$,1q'(B)
("w^'" ?$,1q&(B) ("w^v" ?$,1q&(B) ("w\\'" ?$,1q&(B) ("w\\v" ?$,1q&(B)
("w'^" ?$,1q&(B) ("wv^" ?$,1q&(B) ("w'\\" ?$,1q&(B) ("wv\\" ?$,1q&(B)
("wJ`" ?$,1qa(B) ("wJV" ?$,1qa(B)
("wJ'" ?$,1q`(B) ("wJv" ?$,1q`(B)
("wJ/" ?$,1rT(B)
("wJ/`" ?$,1qe(B) ("wJ/V" ?$,1qe(B) ("wJ`/" ?$,1qe(B) ("wJV/" ?$,1qe(B)
("wJ/'" ?$,1qd(B) ("wJ/v" ?$,1qd(B) ("wJ'/" ?$,1qd(B) ("wJv/" ?$,1qd(B)
("wJ?" ?$,1rR(B)
("wJ?`" ?$,1qc(B) ("wJ?V" ?$,1qc(B) ("wJ`?" ?$,1qc(B) ("wJV?" ?$,1qc(B)
("wJ?'" ?$,1qb(B) ("wJ?v" ?$,1qb(B) ("wJ'?" ?$,1qb(B) ("wJv?" ?$,1qb(B)
("wJ^" ?$,1rW(B) ("wJ\\" ?$,1rW(B)
("wJ^`" ?$,1qg(B) ("wJ^V" ?$,1qg(B) ("wJ\\`" ?$,1qg(B) ("wJ\\V" ?$,1qg(B)
("wJ`^" ?$,1qg(B) ("wJV^" ?$,1qg(B) ("wJ`\\" ?$,1qg(B) ("wJV\\" ?$,1qg(B)
("wJ^'" ?$,1qf(B) ("wJ^v" ?$,1qf(B) ("wJ\\'" ?$,1qf(B) ("wJ\\v" ?$,1qf(B)
("wJ'^" ?$,1qf(B) ("wJv^" ?$,1qf(B) ("wJ'\\" ?$,1qf(B) ("wJv\\" ?$,1qf(B)
)
;;
(quail-define-package "greek-babel" "Greek" "BG" t
"The TeX Babel input method for Classical Greek using mule-unicode-0100-24ff.
-------------------------------------
character capital small
-------------------------------------
alpha A a
beta B b
gamma G g
delta D d
epsilon E e
zeta Z z
eta H h
theta J j
iota I i
kappa K k
lamda L l
mu M m
nu N n
xi X x
omicron O o
pi P p
rho R r
sigma S s
final sigma c
tau T t
upsilon U u
phi F f
chi Q q
psi Y y
omega W w
-------------------------------------
sampi !
digamma #
stigma $
koppa & %
-------------------------------------
------------------------
mark key
------------------------
ypogegrammeni |
psili >
dasia <
oxia '
varia `
perispomeni ~
dialytika \"
ano teleia ;
erotimatiko ?
----------------------
"
nil t t nil nil nil nil nil nil nil t)
(quail-define-rules
("!" ?$,1'a(B) ; sampi
("#" ?$,1'\(B) ; DIGAMMA
("$" ?$,1'[(B) ; stigma
("%" ?$,1'_(B) ; koppa
("&" ?$,1'^(B) ; KOPPA
(">" ?$,1q(B) ; psili
("'" ?$,1r](B) ; oxia
(";" ?$,1&g(B) ; ano teleia
("?" ?$,1&^(B) ; erotimatiko
("\"" ?,A((B) ; dialytika
("|" ?$,1&Z(B) ; ypogegrammeni
("A" ?$,1&q(B)
("B" ?$,1&r(B)
("D" ?$,1&t(B)
("E" ?$,1&u(B)
("F" ?$,1'&(B)
("G" ?$,1&s(B)
("H" ?$,1&w(B)
("I" ?$,1&y(B)
("J" ?$,1&x(B)
("K" ?$,1&z(B)
("L" ?$,1&{(B)
("M" ?$,1&|(B)
("N" ?$,1&}(B)
("O" ?$,1&(B)
("P" ?$,1' (B)
("Q" ?$,1''(B)
("R" ?$,1'!(B)
("S" ?$,1'#(B)
("T" ?$,1'$(B)
("U" ?$,1'%(B)
("W" ?$,1')(B)
("X" ?$,1&~(B)
("Y" ?$,1'((B)
("Z" ?$,1&v(B)
("`" ?$,1rO(B) ; varia
("~" ?$,1r (B) ; perispomeni
("<" ?$,1r^(B) ; dasia
("a" ?$,1'1(B)
("a|" ?$,1qs(B)
("b" ?$,1'2(B)
("c" ?$,1'B(B)
("d" ?$,1'4(B)
("e" ?$,1'5(B)
("f" ?$,1'F(B)
("g" ?$,1'3(B)
("h" ?$,1'7(B)
("h|" ?$,1r#(B)
("i" ?$,1'9(B)
("j" ?$,1'8(B)
("k" ?$,1':(B)
("l" ?$,1';(B)
("m" ?$,1'<(B)
("n" ?$,1'=(B)
("o" ?$,1'?(B)
("p" ?$,1'@(B)
("q" ?$,1'G(B)
("r" ?$,1'A(B)
("s" ?$,1'C(B)
("t" ?$,1'D(B)
("u" ?$,1'E(B)
("w" ?$,1'I(B)
("w|" ?$,1rS(B)
("x" ?$,1'>(B)
("y" ?$,1'H(B)
("z" ?$,1'6(B)
("<i" ?$,1pQ(B)
(">i" ?$,1pP(B)
("'i" ?$,1q7(B)
("<`i" ?$,1pU(B)
(">'i" ?$,1pT(B)
("`i" ?$,1q6(B)
("<`i" ?$,1pS(B)
(">'i" ?$,1pR(B)
("~i" ?$,1r6(B)
("<~i" ?$,1pW(B)
(">'i" ?$,1pV(B)
("\"i" ?$,1'J(B)
("\"'i" ?$,1r3(B)
("\"`i" ?$,1r2(B)
("<~" ?$,1r?(B)
(">~" ?$,1r/(B)
("<`" ?$,1r>(B)
(">'" ?$,1r.(B)
("<`" ?$,1r=(B)
(">`" ?$,1r-(B)
("\"'" ?$,1rN(B)
("\"`" ?$,1rM(B)
("<e" ?$,1p1(B)
(">e" ?$,1p0(B)
("'e" ?$,1q3(B)
("<'e" ?$,1p5(B)
(">'e" ?$,1p4(B)
("`e" ?$,1q2(B)
("<`e" ?$,1p3(B)
(">`e" ?$,1p2(B)
("<a" ?$,1p!(B)
(">a" ?$,1p (B)
("'a" ?$,1q1(B)
("<'a" ?$,1p%(B)
(">'a" ?$,1p$(B)
("`a" ?$,1q0(B)
("<`a" ?$,1p#(B)
(">`a" ?$,1p"(B)
("~a" ?$,1qv(B)
("<~a" ?$,1p'(B)
(">~a" ?$,1p&(B)
("<a|" ?$,1qA(B)
(">a|" ?$,1q@(B)
("'a|" ?$,1qt(B)
("<'a|" ?$,1qE(B)
(">'a|" ?$,1qD(B)
("`a|" ?$,1qr(B)
("<`a|" ?$,1qC(B)
(">`a|" ?$,1qB(B)
("~a|" ?$,1qw(B)
("<~a|" ?$,1qG(B)
(">~a|" ?$,1qF(B)
("<r" ?$,1rE(B)
(">r" ?$,1rD(B)
("<h" ?$,1pA(B)
(">h" ?$,1p@(B)
("'h" ?$,1q5(B)
("<'h" ?$,1pE(B)
(">'h" ?$,1pD(B)
("`h" ?$,1q4(B)
("<`h" ?$,1pC(B)
(">`h" ?$,1pB(B)
("~h" ?$,1r&(B)
("<~h" ?$,1pG(B)
(">~h" ?$,1pF(B)
("|" ?$,1&Z(B) ; ypogegrammeni
("<h|" ?$,1qQ(B)
(">h|" ?$,1qP(B)
("'h|" ?$,1r$(B)
("<'h|" ?$,1qU(B)
(">'h|" ?$,1qT(B)
("`h|" ?$,1r"(B)
("<`h|" ?$,1qS(B)
(">`h|" ?$,1qR(B)
("~h|" ?$,1r'(B)
("<~h|" ?$,1qW(B)
(">~h|" ?$,1qV(B)
("<o" ?$,1pa(B)
(">o" ?$,1p`(B)
("'o" ?$,1q9(B)
("<'o" ?$,1pe(B)
(">'o" ?$,1pd(B)
("`o" ?$,1q8(B)
("<`o" ?$,1pc(B)
(">`o" ?$,1pb(B)
("<u" ?$,1pq(B)
(">u" ?$,1pp(B)
("'u" ?$,1q;(B)
("<'u" ?$,1pu(B)
(">'u" ?$,1pt(B)
("`u" ?$,1q:(B)
("<`u" ?$,1ps(B)
(">`u" ?$,1pr(B)
("~u" ?$,1rF(B)
("<~u" ?$,1pw(B)
(">~u" ?$,1pv(B)
("\"u" ?$,1'K(B)
("\"'u" ?$,1rC(B)
("`\"u" ?$,1rB(B)
("<w" ?$,1q!(B)
(">w" ?$,1q (B)
("'w" ?$,1q=(B)
("<'w" ?$,1q%(B)
(">'w" ?$,1q$(B)
("`w" ?$,1q<(B)
("<`w" ?$,1q#(B)
(">`w" ?$,1q"(B)
("~w" ?$,1rV(B)
("<~w" ?$,1q'(B)
(">~w" ?$,1q&(B)
("<w|" ?$,1qa(B)
(">w|" ?$,1q`(B)
("'w|" ?$,1rT(B)
("<'w|" ?$,1qe(B)
(">'w|" ?$,1qd(B)
("`w|" ?$,1rR(B)
("<`w|" ?$,1qc(B)
(">`w|" ?$,1qb(B)
("~w|" ?$,1rW(B)
("<~w|" ?$,1qg(B)
(">~w|" ?$,1qf(B)
)
;;
(quail-define-package "greek-ibycus4" "Greek" "IB" t
"The Ibycus4 input method for Classical Greek using mule-unicode-0100-24ff."
nil t t nil nil nil nil nil nil nil t)
(quail-define-rules
("{((}" ?\() ("((" ?\() ; #x0028
("{))}" ?\)) ("))" ?\)) ; #x0029
("<<" ?,A+(B) ; #x00ab
(">>" ?,A;(B) ; #x00bb
("-" ?$,1rp(B) ; #x2010
("---" ?$,1rt(B) ; #x2014
("||" ?$,1rv(B) ; #x2016
("{`}" ?$,1rx(B) ("`" ?$,1rx(B) ; #x2018
("{'}" ?$,1ry(B) ("'" ?$,1ry(B) ; #x2019
("{``}" ?$,1r|(B) ("``" ?$,1r|(B) ; #x201c
("{''}" ?$,1r}(B) ("''" ?$,1r}(B) ; #x201d
("{\\dag}" ?$,1s (B) ("\\dag" ?$,1s (B) ; #x2020
("{\\ddag}" ?$,1s!(B) ("\\ddag" ?$,1s!(B) ; #x2021
("<" ?$,1s9(B) ; #x2039
(">" ?$,1s:(B) ; #x203a
("$\\leftarrow$" ?$,1vp(B) ; #x2190
("$\\rightarrow$" ?$,1vr(B) ; #x2192
("?" ?$,1&^(B) ; #x037e ; erotimatiko
(";" ?$,1&g(B) ; #x0387 ; ano teleia
("|" ?$,1&Z(B) ; #x037a ; ypogegrammeni
("A" ?$,1&q(B)
("B" ?$,1&r(B)
("G" ?$,1&s(B)
("D" ?$,1&t(B)
("E" ?$,1&u(B)
("Z" ?$,1&v(B)
("H" ?$,1&w(B)
("Q" ?$,1&x(B)
("I" ?$,1&y(B)
("K" ?$,1&z(B)
("L" ?$,1&{(B)
("M" ?$,1&|(B)
("N" ?$,1&}(B)
("C" ?$,1&~(B)
("O" ?$,1&(B)
("P" ?$,1' (B)
("R" ?$,1'!(B)
("S" ?$,1'#(B)
("T" ?$,1'$(B)
("U" ?$,1'%(B)
("F" ?$,1'&(B)
("X" ?$,1''(B)
("Y" ?$,1'((B)
("W" ?$,1')(B)
("a" ?$,1'1(B)
("b" ?$,1'2(B)
("g" ?$,1'3(B)
("d" ?$,1'4(B)
("e" ?$,1'5(B)
("z" ?$,1'6(B)
("h" ?$,1'7(B)
("q" ?$,1'8(B)
("i" ?$,1'9(B)
("k" ?$,1':(B)
("l" ?$,1';(B)
("m" ?$,1'<(B)
("n" ?$,1'=(B)
("c" ?$,1'>(B)
("o" ?$,1'?(B)
("p" ?$,1'@(B)
("r" ?$,1'A(B)
("j" ?$,1'B(B) ("s " ["$,1'B(B "]) ("s," ["$,1'B(B,"]) ("s." ["$,1'B(B."]) ("s?" ["$,1'B&^(B"]) ("s;" ["$,1'B&g(B"])
("s|" ?$,1'C(B) ("s" ?$,1'C(B)
("t" ?$,1'D(B)
("u" ?$,1'E(B)
("f" ?$,1'F(B)
("x" ?$,1'G(B)
("y" ?$,1'H(B)
("w" ?$,1'I(B)
("i+" ?$,1'J(B)
("u+" ?$,1'K(B)
("V" ?$,1'\(B) ; DIGAMMA
("v" ?$,1'](B) ; digamma
("K+" ?$,1'^(B) ; KOPPA
("k+" ?$,1'_(B) ; koppa
("S+" ?$,1'`(B) ; SAMPI
("s+" ?$,1'a(B) ; sampi
("c+" ?$,1'r(B) ; lunate sigma
("a)" ?$,1p (B)
("a(" ?$,1p!(B)
("a)`" ?$,1p"(B)
("a(`" ?$,1p#(B)
("a)'" ?$,1p$(B)
("a('" ?$,1p%(B)
("a)=" ?$,1p&(B)
("a(=" ?$,1p'(B)
(")A" ?$,1p((B)
("(A" ?$,1p)(B)
(")`A" ?$,1p*(B)
("(`A" ?$,1p+(B)
(")'A" ?$,1p,(B)
("('A" ?$,1p-(B)
(")=A" ?$,1p.(B)
("(=A" ?$,1p/(B)
("e)" ?$,1p0(B)
("e(" ?$,1p1(B)
("e)`" ?$,1p2(B)
("e(`" ?$,1p3(B)
("e)'" ?$,1p4(B)
("e('" ?$,1p5(B)
(")E" ?$,1p8(B)
("(E" ?$,1p9(B)
(")`E" ?$,1p:(B)
("(`E" ?$,1p;(B)
(")'E" ?$,1p<(B)
("('E" ?$,1p=(B)
("h)" ?$,1p@(B)
("h(" ?$,1pA(B)
("h)`" ?$,1pB(B)
("h(`" ?$,1pC(B)
("h)'" ?$,1pD(B)
("h('" ?$,1pE(B)
("h)=" ?$,1pF(B)
("h(=" ?$,1pG(B)
(")H" ?$,1pH(B)
("(H" ?$,1pI(B)
(")`H" ?$,1pJ(B)
("(`H" ?$,1pK(B)
(")'H" ?$,1pL(B)
("('H" ?$,1pM(B)
(")=H" ?$,1pN(B)
("(=H" ?$,1pO(B)
("i)" ?$,1pP(B)
("i(" ?$,1pQ(B)
("i)`" ?$,1pR(B)
("i(`" ?$,1pS(B)
("i)'" ?$,1pT(B)
("i('" ?$,1pU(B)
("i)=" ?$,1pV(B)
("i(=" ?$,1pW(B)
(")I" ?$,1pX(B)
("(I" ?$,1pY(B)
(")`I" ?$,1pZ(B)
("(`I" ?$,1p[(B)
(")'I" ?$,1p\(B)
("('I" ?$,1p](B)
(")=I" ?$,1p^(B)
("(=I" ?$,1p_(B)
("o)" ?$,1p`(B)
("o(" ?$,1pa(B)
("o)`" ?$,1pb(B)
("o(`" ?$,1pc(B)
("o)'" ?$,1pd(B)
("o('" ?$,1pe(B)
(")O" ?$,1ph(B)
("(O" ?$,1pi(B)
(")`O" ?$,1pj(B)
("(`O" ?$,1pk(B)
(")'O" ?$,1pl(B)
("('O" ?$,1pm(B)
("u)" ?$,1pp(B)
("u(" ?$,1pq(B)
("u)`" ?$,1pr(B)
("u(`" ?$,1ps(B)
("u)'" ?$,1pt(B)
("u('" ?$,1pu(B)
("u)=" ?$,1pv(B)
("u(=" ?$,1pw(B)
("(U" ?$,1py(B)
("(`U" ?$,1p{(B)
("('U" ?$,1p}(B)
("(=U" ?$,1p(B)
("w)" ?$,1q (B)
("w(" ?$,1q!(B)
("w)`" ?$,1q"(B)
("w(`" ?$,1q#(B)
("w)'" ?$,1q$(B)
("w('" ?$,1q%(B)
("w)=" ?$,1q&(B)
("w(=" ?$,1q'(B)
(")W" ?$,1q((B)
("(W" ?$,1q)(B)
(")`W" ?$,1q*(B)
("(`W" ?$,1q+(B)
(")'W" ?$,1q,(B)
("('W" ?$,1q-(B)
(")=W" ?$,1q.(B)
("(=W" ?$,1q/(B)
("a`" ?$,1q0(B)
("a'" ?$,1q1(B)
("e`" ?$,1q2(B)
("e'" ?$,1q3(B)
("h`" ?$,1q4(B)
("h'" ?$,1q5(B)
("i`" ?$,1q6(B)
("i'" ?$,1q7(B)
("o`" ?$,1q8(B)
("o'" ?$,1q9(B)
("u`" ?$,1q:(B)
("u'" ?$,1q;(B)
("w`" ?$,1q<(B)
("w'" ?$,1q=(B)
("a)|" ?$,1q@(B)
("a(|" ?$,1qA(B)
("a)`|" ?$,1qB(B)
("a(`|" ?$,1qC(B)
("a)'|" ?$,1qD(B)
("a('|" ?$,1qE(B)
("a)=|" ?$,1qF(B)
("a(=|" ?$,1qG(B)
(")Ai" ?$,1qH(B)
("(Ai" ?$,1qI(B)
(")`Ai" ?$,1qJ(B)
("(`Ai" ?$,1qK(B)
(")'Ai" ?$,1qL(B)
("('Ai" ?$,1qM(B)
(")=Ai" ?$,1qN(B)
("(=Ai" ?$,1qO(B)
("h)|" ?$,1qP(B)
("h(|" ?$,1qQ(B)
("h)`|" ?$,1qR(B)
("h(`|" ?$,1qS(B)
("h)'|" ?$,1qT(B)
("h('|" ?$,1qU(B)
("h)=|" ?$,1qV(B)
("h(=|" ?$,1qW(B)
(")Hi" ?$,1qX(B)
("(Hi" ?$,1qY(B)
(")`Hi" ?$,1qZ(B)
("(`Hi" ?$,1q[(B)
(")'Hi" ?$,1q\(B)
("('Hi" ?$,1q](B)
(")=Hi" ?$,1q^(B)
("(=Hi" ?$,1q_(B)
("w)|" ?$,1q`(B)
("w(|" ?$,1qa(B)
("w)`|" ?$,1qb(B)
("w(`|" ?$,1qc(B)
("w)'|" ?$,1qd(B)
("w('|" ?$,1qe(B)
("w)=|" ?$,1qf(B)
("w(=|" ?$,1qg(B)
(")Wi" ?$,1qh(B)
("(Wi" ?$,1qi(B)
(")`Wi" ?$,1qj(B)
("(`Wi" ?$,1qk(B)
(")'Wi" ?$,1ql(B)
("('Wi" ?$,1qm(B)
(")=Wi" ?$,1qn(B)
("(=Wi" ?$,1qo(B)
("a`|" ?$,1qr(B)
("a|" ?$,1qs(B)
("a'|" ?$,1qt(B)
("a=" ?$,1qv(B)
("a=|" ?$,1qw(B)
("`A" ?$,1qz(B)
("'A" ?$,1q{(B)
("Ai" ?$,1q|(B)
(")" ?$,1q(B) ; #x1fbf ; psili
("=" ?$,1r (B) ; #x1fc0 ; perispomeni
("+=" ?$,1r!(B) ; #x1fc1
("h`|" ?$,1r"(B)
("h|" ?$,1r#(B)
("h'|" ?$,1r$(B)
("h=" ?$,1r&(B)
("h=|" ?$,1r'(B)
("`E" ?$,1r((B)
("'E" ?$,1r)(B)
("`H" ?$,1r*(B)
("'H" ?$,1r+(B)
("Hi" ?$,1r,(B)
(")`" ?$,1r-(B) ; #x1fcd
(")'" ?$,1r.(B) ; #x1fce
(")=" ?$,1r/(B) ; #x1fcf
("i+`" ?$,1r2(B)
("i+'" ?$,1r3(B)
("i=" ?$,1r6(B)
("i+=" ?$,1r7(B)
("`I" ?$,1r:(B)
("'I" ?$,1r;(B)
("(`" ?$,1r=(B) ; #x1fdd
("('" ?$,1r>(B) ; #x1fde
("(=" ?$,1r?(B) ; #x1fdf
("u+`" ?$,1rB(B)
("u+'" ?$,1rC(B)
("r)" ?$,1rD(B)
("r(" ?$,1rE(B)
("u=" ?$,1rF(B)
("u+=" ?$,1rG(B)
("`U" ?$,1rJ(B)
("'U" ?$,1rK(B)
("`R" ?$,1rL(B)
("+`" ?$,1rM(B) ; #x1fed
("+'" ?$,1rN(B) ; #x1fee
("`" ?$,1rO(B) ; #x1fef ; varia
("w`|" ?$,1rR(B)
("w|" ?$,1rS(B)
("w'|" ?$,1rT(B)
("w=" ?$,1rV(B)
("w=|" ?$,1rW(B)
("`O" ?$,1rX(B)
("'O" ?$,1rY(B)
("`W" ?$,1rZ(B)
("'W" ?$,1r[(B)
("Wi" ?$,1r\(B)
("'" ?$,1r](B) ; #x1ffd ; oxia
("(" ?$,1r^(B) ; #x1ffe ; dasia
)
;;
(quail-define-package
"greek" "Greek" ",FY(B" nil
",FEkkgmij\(B: Greek keyboard layout (ISO 8859-7)
--------------
In the right of ,Fk(B key is a combination key, where
,F4(B acute
,F((B diaresis
e.g.
,Fa(B + ,F4(B -> ,F\(B
,Fi(B + ,F((B -> ,Fz(B
,Fi(B + ,F((B + ,F4(B -> ,F@(B"
nil t t t t nil nil nil nil nil t)
;; 1! 2@ 3# 4$ 5% 6^ 7& 8* 9( 0) -_ =+ `~
;; ,F7/(B ,FrS(B ,FeE(B ,FqQ(B ,FtT(B ,FuU(B ,FhH(B ,FiI(B ,FoO(B ,FpP(B [{ ]}
;; ,FaA(B ,FsS(B ,FdD(B ,FvV(B ,FcC(B ,FgG(B ,FnN(B ,FjJ(B ,FkK(B ,F4((B '" \|
;; ,FfF(B ,FwW(B ,FxX(B ,FyY(B ,FbB(B ,FmM(B ,FlL(B ,; .: /?
(quail-define-rules
("1" ?1)
("2" ?2)
("3" ?3)
("4" ?4)
("5" ?5)
("6" ?6)
("7" ?7)
("8" ?8)
("9" ?9)
("0" ?0)
("-" ?-)
("=" ?=)
("`" ?`)
("q" ?,F7(B)
("w" ?,Fr(B)
("e" ?,Fe(B)
("r" ?,Fq(B)
("t" ?,Ft(B)
("y" ?,Fu(B)
("u" ?,Fh(B)
("i" ?,Fi(B)
("o" ?,Fo(B)
("p" ?,Fp(B)
("[" ?\[)
("]" ?\])
("a" ?,Fa(B)
("s" ?,Fs(B)
("d" ?,Fd(B)
("f" ?,Fv(B)
("g" ?,Fc(B)
("h" ?,Fg(B)
("j" ?,Fn(B)
("k" ?,Fj(B)
("l" ?,Fk(B)
(";" ?,F4(B)
("'" ?')
("\\" ?\\)
("z" ?,Ff(B)
("x" ?,Fw(B)
("c" ?,Fx(B)
("v" ?,Fy(B)
("b" ?,Fb(B)
("n" ?,Fm(B)
("m" ?,Fl(B)
("," ?,)
("." ?.)
("/" ?/)
("!" ?!)
("@" ?@)
("#" ?#)
("$" ?$)
("%" ?%)
("^" ?^)
("&" ?&)
("*" ?*)
("(" ?\()
(")" ?\))
("_" ?_)
("+" ?+)
("~" ?~)
("Q" ?,F/(B)
("W" ?,FS(B)
("E" ?,FE(B)
("R" ?,FQ(B)
("T" ?,FT(B)
("Y" ?,FU(B)
("U" ?,FH(B)
("I" ?,FI(B)
("O" ?,FO(B)
("P" ?,FP(B)
("{" ?{)
("}" ?})
("A" ?,FA(B)
("S" ?,FS(B)
("D" ?,FD(B)
("F" ?,FV(B)
("G" ?,FC(B)
("H" ?,FG(B)
("J" ?,FN(B)
("K" ?,FJ(B)
("L" ?,FK(B)
(":" ?,F((B)
("\"" ?\")
("|" ?|)
("Z" ?,FF(B)
("X" ?,FW(B)
("C" ?,FX(B)
("V" ?,FY(B)
("B" ?,FB(B)
("N" ?,FM(B)
("M" ?,FL(B)
("<" ?\;)
(">" ?:)
("?" ??)
(";a" ?,F\(B)
(";e" ?,F](B)
(";h" ?,F^(B)
(";i" ?,F_(B)
(";o" ?,F|(B)
(";y" ?,F}(B)
(";v" ?,F~(B)
(";A" ?,F6(B)
(";E" ?,F8(B)
(";H" ?,F9(B)
(";I" ?,F:(B)
(";O" ?,F<(B)
(";Y" ?,F>(B)
(";V" ?,F?(B)
(":i" ?,Fz(B)
(":y" ?,F{(B)
(":I" ?,FZ(B)
(":Y" ?,F[(B)
(":;i" ?,F@(B)
(":;y" ?,F`(B))
;;; greek.el ends here
More information about the Linux-greek-users
mailing list