
FLOSSMetrics project

Sponsored through Framework Programme Sixth (Call 5) by the
European Comission

Document Information

Version: 1.0
Date : Oct. 10 2007
revision: 0

Owning Partner: Conecta

Author(s):
Carlo Daffara

Reviewer(s):
Jesus M. Gonzalez-Barahona

To:
PUBLIC

Purpose of distribution:
Final Version

The FLOSSMetrics Consortium consists of: Universidad Rey
Juan Carlos, University of Maastrich, Wirtschaftsuniversitaet
Wien, Aristotle University of Thessaloniki, Conecta s.r.l., Zea
Partners and Philips Medical Systems PMS Nederland B.V.

Printed
on at

Status: Confidentiality:

[
[
[
[X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for FLOSSMETRICS
consortium only
- Intended for individual partner only

Deliverable ID: D8.1.1

Title:

Guide for SMEs

License for distribution:
This work is licensed under a Creative Commons Attribution-Share Alike 2.5 License.
(The license can be found in http://creativecommons.org/licenses/by-sa/2.5/)
The original version of this document is available at http://flossmetrics.org

 Copyright FLOSSMetrics Consortium 2006-2007

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Guide for SMEs

Deliverable ID: D8.1.1

Page : 2 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Deliverable: D8.1.1

Title: Guide for SMEs

Executive Summary:

FLOSS (free, libre, open source software) is one of the most important trends in IT since the
advent of the PC and commodity software. However, despite the potential impact on European
firms, its adoption is still hampered by limited knowledge, especially among SMEs that could
potentially benefit the most from it. This document presents a set of guidelines and suggestions
for the adoption of FLOSS within SMEs, using a ladder model that will guide companies from the
initial selection and adoption of products for their IT infrastructure up to the creation of suitable
business models based on FLOSS.

 Copyright FLOSSMetrics Consortium
2

Guide for SMEs

Deliverable ID: D8.1.1

Page : 3 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

CHANGE LOG

Ver. Date Author Description
0.1 19/07/2007 Carlo Daffara Initial proposal
0.2 14/08/2006 Carlo Daffara Improvements in the "What is

FLOSS" chapter with data on
collaborative models, a
simplified licensing view,
mention on non-code
contributions in projects.
New chapter "Myths on
FLOSS".
"Businesses Models" section
modified.
New bibliography and
appendix added.

0.3 23/08/2007 Carlo Daffara New chapters and appendix
added.

0.4 25/08/2007 Carlo Daffara Added executive summary
and some modifications on
the style.

0.5 19/09/2007 Jesus M. Gonzalez-Barahona
Santiago Dueñas

FLOSSMetrics deliverable
format.
Full review, minor fixes.

1.0 10/10/2007 Jesus M. Gonzalez-Barahona Full review, publishable
version

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status Deliverable
Identification

 Copyright FLOSSMetrics Consortium
3

Guide for SMEs

Deliverable ID: D8.1.1

Page : 4 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

TABLE OF CONTENTS

 Introduction...6

1. What's Free/Libre/Open Source Software?..7
 FLOSS as a licensing model...8
 FLOSS as a development model.. .11

2. Ten myths about free/libre open source software..15
 Myth #1: It's a Linux-vs-Windows thing...15
 Myth #2: FLOSS is not reliable or supported.. .16
 Myth #3: Big companies don't use FLOSS...19
 Myth #4: FLOSS is hostile to intellectual property...19
 Myth #5: FLOSS is all about licenses.. ..21
 Myth #6: If I give away my software to the FLOSS community, thousands of developers will
suddenly start working for me for nothing...21
 Myth #7: FLOSS only matters to programmers, since most users never look under the hood
anyway...21
 Myth #8: There is no money to be made on FLOSS.....................................22
 Myth #9: The FLOSS movement isn't sustainable, since people will stop developing free
software once they see others making lots of money from their efforts.......................24
 Myth #10: FLOSS is playing catch-up to Microsoft and the commercial world........................24

3. Basic FLOSS adoption models...26
 The FLOSS adoption ladder..27

4. Finding and selecting software...30

5. Best practices for FLOSS adoption...38
 Management guidelines...38
 Be sure of management commitment to the transition39
 Prepare a clear overview of what is expected from the migration or adoption, including
measurable benchmarks...39
 Make sure that the timetable is realistic..40
 Review the current software/IT procurement and development procedure40
 Seek out advice or search for information on similar transitions.. 40
 Avoid “big switch” transition, and favor incremental migrations...........................41
 Assign at least a person to interacting with the OSS community or the OSS vendor, and try to
find online information sources..42
 Technical guidelines...42
 Understand the way OSS is developed.. ...42
 Create a complete survey of software and hardware that will be affected by the migration, and
what functionality the company is looking for43
 Use the flexibility of OSS to create local adaptations..44
 There is much more software available than what is installed by default................................44
 In selecting packages, always favor stability over functionality......................45
 Design the workflow support infrastructure to reduce the number of “impedance mismatches”
.. .45
 Introduce a trouble ticket system...45
 Compile and update a detailed migration workbook45
 Social guidelines..46
 Provide background information on OSS..46

 Copyright FLOSSMetrics Consortium
4

Guide for SMEs

Deliverable ID: D8.1.1

Page : 5 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Don't force the change on the users, provide explanations..46
 Use the migration as an occasion to improve users skill...47
 Make it easy to experiment and learn...47

6. FLOSS-based business models..49
 Externally funded ventures .. .50
 "Needed improvement" funding50
 Indirect funding / Loss-leader..52
 Internal use52
 "Best knowledge here'' without constraints53
 "Best knowledge here" with constraints53
 "Best code here" without constraints54
 "Best code here" with constraints/Time-decaying licenses...54
 Dual licensing..54
 Unfunded developments55
 Specialized Service-based business models...55
 Software selection support56
 Installation support..57
 Integration support57
 Technical suitability certification...58
 Legal certification...58
 Training..59
 Ongoing maintenance and support contracts..60
 Migration services...61
 Mediation services..62
 Custom development...63
 Assessment of FLOSS business models usage..63

 Bibliography...69

 Appendix 1: estimating the number of active FLOSS projects.......................................74

 Appendix 2: QSOS assessment score tables.. ..77

 Copyright FLOSSMetrics Consortium
5

Guide for SMEs

Deliverable ID: D8.1.1

Page : 6 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Introduction

"Open source software is the most significant all-encompassing and
long-term trend that the software industry has seen since the early
1980s". This is one of the conclusions of a recent IDC report [IDC 06],
which shows how much the perception of FLOSS (free, libre, open
source software) has changed in the recent years. Right now, the
majority of developers in the world are using FLOSS [Forr 07], and
FLOSS platforms are used in one way or another by a large share of
companies.
Despite this situation, there is still a significant barrier in the adoption
process for small and medium companies, both in terms of using
FLOSS internally and in creating products and services based on
FLOSS products. The purpose of this report is to provide a simple and
in-depth view of the fundamental aspects of FLOSS, how to adopt it
within a small/medium company, and how to build a sustainable
business based on it.

 Copyright FLOSSMetrics Consortium
6

Guide for SMEs

Deliverable ID: D8.1.1

Page : 7 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

1. What's Free/Libre/Open
Source Software?

It may be a surprise to discover that the software market that we take
for granted, based on the idea of "shrink-wrapped" packages that are
easy to buy directly by the user, is relatively recent. In the beginning,
software was bundled with hardware by the manufacturer. Due to the
complexity and cost of development (and the relatively limited power
of those first computers), to the business models of the
manufacturers (based on selling hardware), and to other factors, users
freely shared source code and advice, in a collaborative way that led
to the creation of user groups like SHARE (Society to Help Avoid
Redundant Efforts, founded in 1955 and cantered around IBM
systems), and DECUS (for Digital Equipment computers, and later for
HP systems), both still alive. Code was also commonly shared in
academic journals, like the famous "Algorithms" column of the
"Communications of the ACM" journal.

 Copyright FLOSSMetrics Consortium
7

Guide for SMEs

Deliverable ID: D8.1.1

Page : 8 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

With the "unbundling" process (the separation of hardware and
software catalogues), the first "packaged" software products appeared
on the market in the 1970s. With the advent of the first personal
computers (the Apple II, the IBM PC and many others) the shrink-
wrapped software market become the most familiar to users, being
still today a significant part of the overall IT landscape. It is
important however to notice that such market represents only around
25% of the total value of the software market, with the remaining
composed of custom software developed under contract and software
developed in-house [OECD 02].

FLOSS1 as a licensing model

Building on a tradition laid by academic institutions like MIT, Richard
Stall man founded in 1983 the Free Software Foundation (FSF) to find
a way to preserve the freedom of users to study, understand and
modify software, in direct link with the hacker culture of openness
and sharing of information. The objective of the FSF was to create a
complete reimplementation of the Unix operating system, at that time
an important reference for most large companies and research
centres. With this purpose Stall man and many others created a
complete development and execution environment, for which in the
late 1980s the kernel (the underlying core of an operating system) was
the only missing component. This gap was filled soon, in 1991, by two
different teams: the effort lead by Linus Corvallis developed the Linux
kernel, while William and Lenny Jollity wrote a series in the Dr. Hobbs
Journal on how to port BSD Unix to i386-based PCs, creating the basis
for a complete, free operating system for modern personal computers
[DB 00].

The Free Software Foundation places a strict emphasis on the
underlying "four freedoms":

1Richard Stallman and the FSF introduced the term “free software”. Later, the Open Source Initiative proposed “open
source software”, allegedly to avoid the linguistic uncertainty associated with the English term "free", specifically used
by the Free Software Foundation to preserve the underlying concept of freedom. The “libre software” term was
introduced for the same reason, and used specially in Europe. The term "FLOSS" was introduced by Rishab Gosh in the
context of EU-funded project "Free/Libre and Open source software: survey and study" started in 2002 as a catch-all
term for free software and open source as described in this section. In this report we will use mainly the term FLOSS.

 Copyright FLOSSMetrics Consortium
8

Guide for SMEs

Deliverable ID: D8.1.1

Page : 9 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

● The freedom to run the program, for any purpose (freedom 0)
● The freedom to study how the program works, and adapt it to

your needs (freedom 1). Access to the source code is a
precondition for this

● The freedom to redistribute copies so you can help your
neighbour (freedom 2)

● The freedom to improve the program, and release your
improvements to the public, so that the whole community
benefits (freedom 3). Access to the source code is a precondition
for this.

For this reason, the FSF created a set of "free software licenses", and
among them the GPL (general public license) and LGPL (lesser general
public license) that are the most widely used, both in terms of number
of projects and in number of lines of code covered.

Unfortunately, in many situations the term "free software" is
frequently interpreted as "gratis", that is, with no price; a fact that
forced the FSF to introduce the slogan "free as in free speech, not as in
free beer". The free software environment moved at a significant pace,
up to the development of complete user environments such as
GNOME and KDE, and to the design in 1998 of the "open source"
trademark, created to present a more pragmatic alternative to the
somewhat "political" orientations of the FSF. The Open Source
definition is based on a similar set of conditions:

“Free Redistribution The license shall not restrict any party from
selling or giving away the software as a component of an aggregate
software distribution containing programs from several different
sources. The license shall not require a royalty or other fee for such
sale.

Source Code The program must include source code, and must allow
distribution in source code as well as compiled form. Where some form
of a product is not distributed with source code, there must be a well-
publicized means of obtaining the source code for no more than a
reasonable reproduction cost preferably, downloading via the Internet
without charge. The source code must be the preferred form in which a
programmer would modify the program. Deliberately obfuscated

 Copyright FLOSSMetrics Consortium
9

Guide for SMEs

Deliverable ID: D8.1.1

Page : 10 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

source code is not allowed. Intermediate forms such as the output of a
preprocessor or translator are not allowed.

Derived Works The license must allow modifications and derived
works, and must allow them to be distributed under the same terms as
the license of the original software.

Integrity of The Author's Source Code The license may restrict
source-code from being distributed in modified form only if the license
allows the distribution of "patch files" with the source code for the
purpose of modifying the program at build time. The license must
explicitly permit distribution of software built from modified source
code. The license may require derived works to carry a different name
or version number from the original software.

No Discrimination Against Persons or Groups The license must not
discriminate against any person or group of persons.

No Discrimination Against Fields of Endeavour The license must not
restrict anyone from making use of the program in a specific field of
endeavour. For example, it may not restrict the program from being
used in a business, or from being used for genetic research.

Distribution of License The rights attached to the program must apply
to all to whom the program is redistributed without the need for
execution of an additional license by those parties.

License Must Not Be Specific to a Product The rights attached to the
program must not depend on the program's being part of a particular
software distribution. If the program is extracted from that distribution
and used or distributed within the terms of the program's license, all
parties to whom the program is redistributed should have the same
rights as those that are granted in conjunction with the original
software distribution.

License Must Not Restrict Other Software The license must not place
restrictions on other software that is distributed along with the licensed
software. For example, the license must not insist that all other
programs distributed on the same medium must be open-source

 Copyright FLOSSMetrics Consortium
10

Guide for SMEs

Deliverable ID: D8.1.1

Page : 11 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

software.

License Must Be Technology-Neutral No provision of the license may
be predicated on any individual technology or style of interface.”

Both groups maintain a list of licenses that comply with the terms of
the Free Software Definition, or the list of conditions for using the
term "open source".In fact, there are more than 50 licenses identified
as "open source" or "free software", but fortunately they can be
classified in a very simple way as [Sun 06, UU 05]:

● "provide credit": use, modification, redistribution are allowed,
but credit to the original author is due, if redistributed.
Examples: BSD license, Apache License v2.

● "provide fixes": use, modification, redistribution are allowed, but
source code for any changes must be provided to the original
author, if redistributed. Examples: Mozilla-style licenses (Mozilla
Public License).

● "provide all": use, modification, redistribution are allowed, but
source code of any derived product must be provided, if
redistributed. Example: GPL.

When code from different projects is mixed and redistributed, the
issue of license compatibility becomes important. An extremely
detailed matrix with licensing compatibility with regards of GPL
(including the recently released GPLv3 license) is available at [Fed 07];
in any case, whenever a product is released or distributed, it is
advisable to ask advice of an attorney with expertise in FLOSS licenses
and intellectual property (a similar advice applies to proprietary
software releases).

FLOSS as a development model

While FLOSS as a definition covers exclusively the licensing regime, by
extension the “openness” of the code introduced the possibility of
sharing development efforts among different groups, in a way similar
to those of the early user groups of the sixties. In this sense, Eric
Raymond introduced in his seminal paper “The cathedral and the

 Copyright FLOSSMetrics Consortium
11

Guide for SMEs

Deliverable ID: D8.1.1

Page : 12 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

bazaar” the concept of shared development, contrasting this “bazaar”
style where every developer is free to choose on what part of the code
to work, in contrast to the “cathedral” or formalized development
approach that is rigid and structured [Ram 00].

While the concept took hold quickly, the reality is that collaboratively
developed projects tend to be executed in a continuum between
cathedral and bazaar; for example, for most projects there is a formal
structure (with many sub-projects, more open to external
contributions) while other are strictly formal (for example, projects
that use FLOSS code in a certified environment, such as avionics or
safety-critical systems). The important point raised by Raymond is
the fact that both coding and ancillary activities like bug fixing and
production of documentation can be shared in a large community,
creating in a sense "virtual software houses" that in a voluntarism way
provide effort and resources; this helps also in the leverage of a large
community of expert users, that can contribute back in a significant
way, as shown in [VH 03, VH 05].

When such collaboration takes place, it may be not only in the form of
source code, as for example is commented in [July 06]: “In the year
2000, fifty outside contributors to Open Cascade provided various
kinds of assistance: transferring software to other systems (IRIX 64 bits,
Alpha OSF), correcting defects (memory leaks…) and translating the
tutorial into Spanish, etc. Currently, there are seventy active
contributors and the objective is to reach one hundred. These outside
contributions are significant. Open Cascade estimates that they
represent about 20 % of the value of the software.”

A similar view has been presented in [Seri 06], where one of the
leaders of the KDE project2 presented the elements that collectively
contribute to KDE:

● Artwork
● Documentation
● Human-computer interaction

2KDE is a complete user desktop environment, created originally as a libre alternative of the Unix
CDE environment, and later evolved to encompass libraries, end-user software and training
material.

 Copyright FLOSSMetrics Consortium
12

Guide for SMEs

Deliverable ID: D8.1.1

Page : 13 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

● Marketing
● Quality Assurance
● Software Development
● Translation

If overall software suitability to the task is considered, it is clear that
non-code contributions are as important as source code. For example
translations, documentation and overall quality are vital for the
software to be adopted by end-users worldwide.

Another example comes from [Sue 07], where the number of
participants within individual OpenOffice sub projects were counted:

As it can be inferred from the area graph, there are roughly as much
non-code contributors than those working on product development
and related projects (that are directly related to source code).

 Copyright FLOSSMetrics Consortium
13

Guide for SMEs

Deliverable ID: D8.1.1

Page : 14 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

This form of collaboration can happen even between competing
companies. For example, news about potential security vulnerabilities
are commonly shared among different competing Linux vendors. As
an example, Mark Cox of Red Hat (a widely used distribution of Linux)
analysed the results of two years of incident responses, and found
that the largest share of information was coming from the other peer
FLOSS distributors [Cox 07].

In more recent years, companies started the adoption of this
collaborative model to develop software and services, sometimes
supplementing the volunteer communities and sometimes starting
new projects and providing substantial resources to its continuation.
This later stage (the commercialization stage) is more focused on the
sustainability of business models adopted by said companies, and is
the main focus of chapter 6.

 Copyright FLOSSMetrics Consortium
14

Guide for SMEs

Deliverable ID: D8.1.1

Page : 15 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

2. Ten myths about
free/libre open source

software

In 1999, Tim O'Reilly, founder of a popular open source-oriented
publishing house, gave a keynote speech to an audience of Fortune
500 executives called "ten myths about open source software". As
those myths are still perceived today, as shown by recent reports [CIO
07, ED 05, Forr 07], and are still perceived as a barrier towards FLOSS
adoption, we will try to provide here a SME-oriented and pragmatic
answer to all of them.

Myth #1: It's a Linux-vs-Windows thing.
Most recent debates about FLOSS were focused on an all-or-nothing
perception. For example, when introducing FLOSS in a company, a full
software migration is often considered as necessary. This, and the fact

 Copyright FLOSSMetrics Consortium
15

Guide for SMEs

Deliverable ID: D8.1.1

Page : 16 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

that there is limited knowledge of FLOSS projects except for a few
very widely known ones (like Linux, Apache, OpenOffice.org), created
the perception that most FLOSS is designed and targeted as a direct
competitor of Microsoft products. The reality is that there is an
enormous number of active projects in practically any IT field,
including business-specific (such as ERP systems), being most of them
cross-platform, capable of running Microsoft Windows, Apple's OSX
(which is itself based on more than 300 open source projects) or
Linux. As can be found in Appendix 1, there are more than 18,000
FLOSS projects that are stable and mature for adoption by SMEs.

Myth #2: FLOSS is not reliable or supported.
This myth is based on a common perception that FLOSS is exclusively
developed by volunteers in a non-coordinated or unstructured way.
There are many errors in this view:

● the volunteer perception: while volunteer contributions are a
significant part (and sometimes the majority) of large scale
projects, around 50% of developers have received a financial
compensation for working on FLOSS projects, either directly paid
to improve the projects or paid to support them. This has been
shown in recent studies [Gosh 05, Gosh 06] and can be inferred
directly by the fact that in the software industry at large, 68% of
software products include directly FLOSS-derived code.

● paid programmers are better: even for the percentage of
contributions that are coming from volunteers, it is commonly
perceived that those should be of inferior quality, as there is no
financial incentive to produce quality software. This ignores the
fact that intrinsic incentives are in many cases more effective
than monetary compensation [Gosh 06], and the fact that
sometimes users are interested in improving the software that
they are using [VH 03]. This second effect, called user-driven
innovation, has been shown in past research to be a significant
force. For example, around 25% of innovations in fields like
software security, printed circuit boards CAD systems and
library software were designed and introduced by advanced
users. The same effect provides a fundamental design feedback,

 Copyright FLOSSMetrics Consortium
16

Guide for SMEs

Deliverable ID: D8.1.1

Page : 17 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

as large project collects both good and bad experiences in using
the software (for example, the Ubuntu Linux “Testimonial and
Experiences page3” that allows for a form of user-driven
“steering” of the project and the identification of trouble points.

● there is no support: most large scale project are related to
companies that provide paid-for support, in a way similar to
that of proprietary software companies. The availability of
source code and the modification rights gives also the additional
advantage that support can be obtained even for projects that
are no longer active, in stark difference with proprietary
software where no code escrow clause was included in the
acquisition contract.

● FLOSS is inherently unreliable: many believe that FLOSS, as
developed in an open and unstructured way, is inherently of
lesser quality when compared to proprietary software. The
reality is that most FLOSS projects are organized in a semi-strict
structure, and only very modular projects are inherently
"bazaar-style", allowing for large scale internal decoupling. In
any case, the impact of FLOSS-style development has been
assessed in several research papers, and for example in [Suc 04]
we found: “The hypothesis that open-source software fosters
more creativity is supported by our analysis. The growing rate, or
the number of functions added, was greater in the open-source
projects than in the closed-source projects. This indicates that the
open-source approach may be able to provide more features over
time than by using the closed-source approach. Practitioners
interested in capturing market share by providing additional
features should look to the open-source methodology as a method
to achieve this. In terms of defects, our analysis finds that the
changing rate or the functions modified as a percentage of the
total functions is higher in open-source projects than in closed-
source projects. This supports the hypothesis that defects may be
found and fixed more quickly in open-source projects than in
closed-source projects and may be an added benefit for using the
open-source development model.” This is consistent with results
from vendors of software defect identification tools, such as

3http://ubuntuforums.org/forumdisplay.php?f=103

 Copyright FLOSSMetrics Consortium
17

Guide for SMEs

Deliverable ID: D8.1.1

Page : 18 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Reasoning, that found that while the bug density ratio in initial
project releases is on par with proprietary developments, it
improves rapidly and for some projects defect densities are
significantly lower than that of the average proprietary code
[Reas 06a, Reas 06b]4. This was confirmed by other studies like
the reports from Coverity.

The fact that FLOSS is overall reliable can be also inferred by surveys
like [CIO 07], where 79% of respondents answered positively to the
question “My company's experience with open source products other
than Linux has been so good we plan to expand their use”.

In this sense, it should be no surprise that several FLOSS projects have
received safety certifications, or have been used in medical devices,
control systems and avionics. For example, the VISTA system is a
large scale electronic health care system, developed by the US
Department of Defense for its own veteran hospitals, and now used in
more than 1000 hospitals and clinics in the US alone, along with many
other installations across many countries. Other examples include the
use of Linux in Siemens Magnetic Resonance Imaging systems used in
diagnostics, the use of the open source ADACORE environment in in-
flight avionics, the FIPS-140 certification of two of the most important
encryption toolkits (OpenSSL and NSS), and many more.

If we take as an example the IEC 61508 safety integrity levels [Daf 06-
2]:

the UK Health and Safety Executive, in a study from 2002 [HSE 02]
4"At a defect density of 0.09 defects per KLOC, the version of MySQL we inspected has a defect
density that is about six times lower than the average of comparable proprietary projects.”

 Copyright FLOSSMetrics Consortium
18

>10<10exp-51

>100<10exp-62

>1000<10exp-73

>10000<10exp-84

Risk reduction
factor

Dangerous
failures/hour

SIL level

Guide for SMEs

Deliverable ID: D8.1.1

Page : 19 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

found that Linux was robust enough, and that it could be certified up
to SIL3 with limited effort. This would make it amenable for use in air
traffic control displays, railways control systems and process plant
control.

Myth #3: Big companies don't use FLOSS.
The easiest myth to dispel: apart from the large IT companies that are
actively promoting open source software like IBM, HP, Sun, Oracle, and
others, about 86% of Fortune 1000 companies are deploying or
testing FLOSS, and a similar percentage is found in Europe [Aug 04].
Of those, 35% or more are deploying more than 20% of their systems
as FLOSS, and 11% of companies report more than 20% of their
applications as FLOSS. While usage in server-centric and IT
infrastructure is more common, around 26% of large companies are
mentioning the use of Linux on the desktop, and a much larger
percentage are reporting the use of some other FLOSS packages, such
as OpenOffice.org and Firefox on Windows desktops. A curious fact
also evident from other surveys is that many companies and public
administrations are not aware of their internal use of FLOSS,
sometimes for simple ignorance of the licensing terms and sometimes
because the product is offered or embedded in what seems like a
traditional proprietary offering (for example, many security and
networking products, or enterprise products like VMware ESX server,
use FLOSS internally).

Myth #4: FLOSS is hostile to intellectual property.
There are several aspects that are referenced to this myth:

● The GPL license is "viral": the most widely used license does
have a specific clause which mandates that when a software
product that is derived from GPL software code is redistributed,
the entire product must comply with the conditions of the GPL.
This has prompted some companies to claim that “the viral
aspect of the G.P.L. poses a threat to the intellectual property of
any organization making use of it”5. The reality is that for most

5As mentioned by Craig Mundie, Microsoft's vice president, in a talk at New York University's Stern
school of Business in 2001. Other representatives of Microsoft like Bill Gates said that "[the GPL] it
makes it impossible for a commercial company to use any of that work or build on any of that
work", and Steve Ballmer "Linux is a cancer that attaches itself in an intellectual property sense to

 Copyright FLOSSMetrics Consortium
19

Guide for SMEs

Deliverable ID: D8.1.1

Page : 20 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

scenarios, this clause simply provides a way to prevent
appropriation of code without giving back contributions or
credit, which is one of the reasons why many developers prefer
the GPL to other licenses. Simple use of FLOSS in itself does not
require any change to the license of internally developed
software, and most companies routinely run proprietary
software on top of GPL-licensed code like the Linux kernel.

● The free software community steals the intellectual property
of other companies: this is mainly the byproduct of a legal case,
in which the SCO company claimed in 2003 that IBM improperly
included copyrighted material in the Linux kernel. In the original
claim, it was mentioned that IBM “put SCO’s confidential and
proprietary information into Linux, the free operating system”6
and that several millions of lines of code of the Linux kernel
were stolen from SCO's Unix source code. Now, four years later,
the judges have thrown out most of the claims, leaving less than
300 lines of code (mostly standard interface code) still under
evaluation, out of more than 6 million lines of code of a modern
Linux kernel. Recently Microsoft issued similar statements, with
Microsoft's CEO Steve Ballmer7 claiming that “that product
(Linux) uses our patented intellectual property”, and later
numbering how many patents Linux and other FLOSS products
were infringing Microsoft's intellectual property. The reality is
that structured FLOSS projects do have strict policies for
accepting patches and external contributions. As an example, the
Eclipse project has a strict due diligence process, that covers
external contributions, code rights assignments, code review and
license compatibility. The Eclipse Foundation also uses
automated tools to check for code copying, keyword scanning
for words with legal significance and a controlled release review
prior to updating the code [Cam 06]. Similar processes are in
place in other FLOSS projects [Rig 06].

everything it touches ... if you use any open-source software, you have to make the rest of your
software open source" (interview at Chicago Sun-Times, 2001).
6The transcript of the initial complaint and a full list of case documents (along with significant
analysis) can be found in the GrokLaw site, at http://www.groklaw.net
7http://blogs.zdnet.com/hardware/?p=154

 Copyright FLOSSMetrics Consortium
20

Guide for SMEs

Deliverable ID: D8.1.1

Page : 21 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Myth #5: FLOSS is all about licenses.
While in a strict sense a FLOSS project is defined by its license, most
aspects of open source are really related to the openness and
collaborative aspects of the development, as described in chapter 1.

Myth #6: If I give away my software to the FLOSS community,
thousands of developers will suddenly start working for me for
nothing.
There is no guarantee that simply “dumping” source code on the web
will make a FLOSS project appear, and there have been several
examples of such behavior to be even negative (because the
community may see this as “garbage dumping”). The reality is that for
some collaboration to happen, there must be first of all a good
communication, interaction strategy and effort in place. In addition,
investing in community creation and dissemination efforts increase
the probability of a bidirectional effort sharing. It is important to
mention that surveys like OSSWatch or [CIO 07] found a significant
proportion of companies and public administrations (between 14%
and 25%) contribute back patches or participate actively in FLOSS
communities.

Myth #7: FLOSS only matters to programmers, since most users
never look under the hood anyway.
The fact that most users are not interested in the source code does
not imply that having the source code available in itself is useless.
Several positive aspects can be identified:

● The availability of the code allows end users to eventually pay
someone for modifications or continuing maintenance even
when the original FLOSS project disappears or becomes inactive.

● “Under the hood” there is not only code, but many non-code
artifacts that are vital to a project, like translations,
documentation, examples, etc. Many users can contribute in such
aspects even if they are not programmers.

● For some projects, having the code available allows for a
significant cost reduction or increases dramatically the flexibility

 Copyright FLOSSMetrics Consortium
21

Guide for SMEs

Deliverable ID: D8.1.1

Page : 22 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

of the offered solution. For example, in a project called
MuleSource (a sophisticated middleware system) it was found
that 64% of users perform at least one source code modification.

Myth #8: There is no money to be made on FLOSS.
Even many researchers have proclaimed in a way or the other that the
freely available nature of the code precludes any potential commercial
exploitation. For example, in [Hahn 02]: “The GPL effectively prevents
profit-making firms from using any of the code since all derivative
products must also be distributed under the GPL license”. This of
course collides with the economic results obtained by companies like
HP (that in 2003 reported more than 2.5B$ in Linux-related revenues),
or the 400M$ revenues reported in 2006 by RedHat. In [Gosh 06] it is
evaluated that:

● Defined broadly, FLOSS-related services could reach a 32% share
of all IT services by 2010, and the FLOSS-related share of the
economy could reach 4% of European GDP by 2010.

● FLOSS directly supports the 29% share of software that is
developed in-house in the EU (43% in the U.S.).

● FLOSS potentially saves industry over 36% in software R&D
investment that can result in increased profits or be more
usefully spent in further innovation.

● The notional value of Europe’s investment in FLOSS software
today is Euro 22 billion (36 billion in the US) representing 20.5%
of total software investment (20% in the US).

Similar measures are predicted by independent consulting groups like
Gartner: in [Gar 06] it is predicted that two years from now, around
25% of the total software market will be FLOSS-based (either through
external providers, or by internal developments).

 Copyright FLOSSMetrics Consortium
22

Guide for SMEs

Deliverable ID: D8.1.1

Page : 23 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Another relevant aspect is that since most companies adopting FLOSS
report significant cost savings, these can be directly transferred to
external professional services or incorporated as additional profit
margin. For example, in [Inf 07]:

In a survey of 800 IT managers, InfoWorld found that of all the FLOSS
adopters, those collecting the most significant benefits are those that
deploy more open source products, with 24% of the "large users"
(more than 100 products) reporting savings of more than 60%. It is
also interesting to notice that only a very small percentage (<9%)
reports that there are no savings or that costs have increased
compared to proprietary software.

 Copyright FLOSSMetrics Consortium
23

Guide for SMEs

Deliverable ID: D8.1.1

Page : 24 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Myth #9: The FLOSS movement isn't sustainable, since people will
stop developing free software once they see others making lots of
money from their efforts.
This is connected to the view of myth #2, the idea that FLOSS is
developed by volunteers, and that companies can only profit in a
parasitic way from the code that is developed for free. As discussed in
that part, the reality is that in most projects companies and
volunteers participate in a collaborative and non-competitive way;
also, the most widely used license (the GPL) forced companies to
reciprocate their efforts by making dissemination of the source code
mandatory whenever there is dissemination of code derived from GPL
projects.

Myth #10: FLOSS is playing catch-up to Microsoft and the
commercial world.
The concept of software innovation is really rooted in two different
aspects: technical innovation and field innovation. While technical
innovation is mostly invisible to the user, “field innovation” (for
example a new kind of application) is highly visible. Maybe because of
this it is widespread the perception that most FLOSS software is sort
of a copy of some other (desktop) oriented proprietary application.

The reality, on the contrary, is that most proprietary software is non-
innovative in this aspect. While very few examples of new concepts
(like Dan Bricklin's spreadsheet idea) can be found, most applications
are matched to the tasks that people performs daily, and as such
there is a strong disincentive to innovate. There are very few studies
comparing FLOSS with proprietary software in a replicable and
objective way, and one of those is [Kli 05]:

 Copyright FLOSSMetrics Consortium
24

Guide for SMEs

Deliverable ID: D8.1.1

Page : 25 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

The end result is that from a field innovation point of view, around
12% of the projects in the sample are considered innovative, a
percentage that is comparable to that of the proprietary software
market. As for the technical innovativeness, the already cited [Suc 04]
found that “The hypothesis that open-source software fosters more
creativity is supported by our analysis. The growing rate, or the
number of functions added, was greater in the open-source projects
than in the closed-source projects. This indicates that the open-source
approach may be able to provide more features over time than by
using the closed-source approach.”

 Copyright FLOSSMetrics Consortium
25

Guide for SMEs

Deliverable ID: D8.1.1

Page : 26 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

3. Basic FLOSS adoption
models

Within a company, the value that comes from FLOSS can derive from
several different areas:

● basic substitution/migration: the use of FLOSS in the IT
infrastructure, frequently in substitution of a proprietary
software

● new deployment: the introduction of FLOSS for a new project
internal to the company (adoption)

● selling services based on FLOSS
● selling products that contain FLOSS as a significant component

In this sense, a company may find useful FLOSS from a tactical point
of view (FLOSS is cheaper to implement, with less constraint from a
traditional vendor, or may help in introducing products in a reduced
time to market) or a strategic point of view (creation of new markets,
adoption of different business models). To be sustainable, a company
must adopt a business model that provides a way to turn the FLOSS
adoption into lower costs or increased revenues, and must also take

 Copyright FLOSSMetrics Consortium
26

Guide for SMEs

Deliverable ID: D8.1.1

Page : 27 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

into account the fact that at least a part of the participant community
may be out of control of the company (as it commonly happens in
large scale FLOSS projects, most contributors are not working for a
single company).

The FLOSS adoption ladder
These different areas corresponds to individual steps in the FLOSS
adoption ladder, that can be summarized as (modified from [Car 07]):

In the first stage ("use") there is simple adoption or migration, usually
without any additional contact with the community, of one or more
FLOSS packages. This adoption is in many cases started in a
grassroots way, directly by employees, and it is performed with the
specific target of exploration or reduction of costs. Many examples of
adopted packages in this area are related to desktop applications, like
the Firefox web browser or the OpenOffice.org personal productivity
application; in some cases, small single-purpose application servers

 Copyright FLOSSMetrics Consortium
27

value
appropriated

Time

denial

use
contribute

champion

engineering driven business driven

single product multiple projects

collaborate and
redefine

Guide for SMEs

Deliverable ID: D8.1.1

Page : 28 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

are introduced, like mail servers or web servers for introducing web-
based applications. At this stage, usually there is no or very little
contribution back to the community, that in many cases is not even
perceived as a peer in the potential interaction. However, most
companies that started adoption of FLOSS for the internal IT
infrastructure are actively extending it; for example, a [CIO 07] survey
found that of those adopting Linux, 65% of companies are planning to
extend its use, while only 1% plan for a use reduction. These positive
results tend to increase familiarity with FLOSS in general and with the
underlying collaborative model, and facilitate the upgrade to the
successive steps.

In the second stage ("contribute") there is an active involvement by the
company into the development of the adopted FLOSS project. This
contribution may come directly in terms of code, or through
participation in events, indirectly by sponsoring, or simply by acting
as promoters of the project. This step requires an explicit support
from management, and provides positive returns both for the project
and for the company (that reduces the cost of having functionalities
implemented, by sharing the development cost with the community);
there is also an explicit recognition of the participation and activities
of internal developers and their interaction with FLOSS projects. An
example of company in this stage is Apple (as OSX leverages more
than 340 different FLOSS projects).

In the third stage ("champion") the company is basing a significant
part of the underlying business model on FLOSS projects, and as such
devolves a significant effort in the participation activities. The basic
support activities of the contribution stage is strengthened and
extended, to make the company a key management point that
manages not only internally-produced contributions, but external
developers as well. This turns the company into a part of the much
larger project ecosystem, and provides increased business
opportunities thanks to this enlargement.

The fourth stage ("collaborate and redefine") is characterized by an
extension of the cooperation model, from a disjoint collection of
individual projects to a coordinated effort to influence the market and
the customer's perception of the environment. Not only the company

 Copyright FLOSSMetrics Consortium
28

Guide for SMEs

Deliverable ID: D8.1.1

Page : 29 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

changes most of its internal structure to accommodate open
development practices, but also encourages the creation of a network
of partners and independent projects, that are perceived as potential
enlargements of the business ecosystem (even if some of those same
projects can become potential competitors).

The cost and activities that are specific of each stage can be
synthesized as:

Stage Main cost centers

Use Identification of potentially interesting software,
adoption, migration, training

Contribute development time, sponsorship

Champion development time, sponsorship, community
interaction, support to third parties

Redefine development time, project and ecosystem
coordination

It may surprise the fact that among the main cost centers of the first
stage ("use") the identification of applicable software is prominent.
This is confirmed by independent studies, like the EU COSPA
migration project. Using data from [COS 05], we find that the
"searching process" (that involves both searching for software and
searching for documentation) is responsible for around 40% of the
support costs, in some cases even surpassing the overall training
costs of a large scale migration.

 Copyright FLOSSMetrics Consortium
29

Guide for SMEs

Deliverable ID: D8.1.1

Page : 30 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

4. Finding and selecting
software

As briefly mentioned in the previous chapter, the software selection
process is an often overlooked but extremely important component of
a migration or adoption of FLOSS. As mentioned in Appendix 1, there
are more than 18000 mature and stable open source project, and
most of these have no strict "promotional" budget or are not backed
by companies that are able to provide marketing and dissemination
support.

There are three separate steps that should be taken to successfully
identify a set of FLOSS packages:

● identify your requirements
● search for packages matching your functional requirements
● select the appropriate package from the matching set

The first step is an often overlooked activity, but is crucial for a

 Copyright FLOSSMetrics Consortium
30

Guide for SMEs

Deliverable ID: D8.1.1

Page : 31 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

successful adoption; in many cases, there are no perfect matches for a
given proprietary product, but equally good alternatives that perform
the necessary activity as well (and sometimes even better). In this
sense, a small shortlist of "required" and "useful" functions should be
a first step in performing the selection.

After the shortlist, it is necessary to find the packages that may
satisfy the given requirements. There are several important web sites
that provide information on available software, both in an
undifferentiated way (like SourceForge, that mainly acts as a project
repository) and through detailed reviews and comparisons with
proprietary software.

Forge-based sites:
these sites are mostly providing support and download services, and
host a number of project that varies between 150000 (Sourceforge) to
a few hundred; an integrated search functionality is provided. Most
are based on SourceForge code, its reimplementation (GForge), or on
collaborative development platforms that provide similar services
(storage, email communication, code versioning and change support,
bug tracking). Some of the most important sites:

http://sourceforge.net/
http://savannah.gnu.org/
https://gna.org/
http://alioth.debian.org/
http://www.berlios.de/
http://codehaus.org/

Software announce sites:
These sites are mainly news aggregators, that provide detailed
information on recently announced versions of a FLOSS package,
along with information on licenses, home page and screenshots.

http://freshmeat.net/
http://sourcewell.berlios.de/

List of software equivalents:

 Copyright FLOSSMetrics Consortium
31

http://codehaus.org/
http://alioth.debian.org/
https://gna.org/
http://savannah.gnu.org/
http://sourceforge.net/

Guide for SMEs

Deliverable ID: D8.1.1

Page : 32 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

http://www.linuxrsp.ru/win-lin-soft/table-eng.html
http://www.osalt.com/

Most Linux distributions also include a package search tool, like
Debian and Ubuntu's Synaptic tool:

This tool provides search and installation support for all the
installable packages that are included in the distribution
"repositories", specialized sites that provide binary packages of the
available FLOSS projects. The repositories are divided usually into
"stable" and "unstable" ones, to provide the end-users with the choice
between stable software and the last version (with the latest features,
but not as thoroughly tested). It should be noted that nowadays no
modern, end-user targeted distribution require the user to see or

 Copyright FLOSSMetrics Consortium
32

Guide for SMEs

Deliverable ID: D8.1.1

Page : 33 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

interact in any way with the FLOSS source code; in this sense, if to
install a package it is necessary to perform code compilation or
similar activities, the package itself should be considered
experimental, and its adoption should be limited to where internal,
specialized support is available.

Once a set of potentially useful applications have been found, it is
fundamental to evaluate between the various applications. This can be
done applying the QSOS methodology, created in the context of the EU
project with the same name, and available at http://www.qsos.org .
The project leverage previous activities in the same area, like the
Open Source Maturity Model from Navica, OSMM from CapGemini or
the Business Readiness Ratings; and uses a 4 step approach:

The methodology is divided into steps, with the "definition" step used
to define the element used in the evaluation/selection/qualification
ones. The definition is based on the following elements:

● Software families: hierarchical classification of software
domains and description of functional grids associated with
each domain

● Types of licenses: classification of free and open source licenses
● Types of communities: classification of community

 Copyright FLOSSMetrics Consortium
33

Guide for SMEs

Deliverable ID: D8.1.1

Page : 34 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

organizations existing around a free or open source software
and in charge of its life-cycle.

The evaluation step is done in two steps, the first is the collection of
the relevant and factual information on the FLOSS project (called in
the QSOS terminology the "identity card") and the second is the
creation of the evaluation sheet, based on three criteria:

● Functional coverage
● Risks from the user's perspective
● Risks from the service provider's perspective

The identity card collects the following data:

● General information
• Name of the software
• Reference, date of creation, date of release of the ID card
• Author
• Type of software
• Brief description of the software
• Licenses to which the software is subjected
• Project's URI and demonstration site
• Compatible operating systems
• Fork's origin (if the software is a fork)

● Existing services
• Documentation
• Number of contractual support offers
• Number of training offers
• Number of consultancy offers

● Functional and technical aspects
• Technologies of implementation
• Technical prerequisites
• Detailed functionalities
• Roadmap

● Synthesis
• General trend

 Copyright FLOSSMetrics Consortium
34

Guide for SMEs

Deliverable ID: D8.1.1

Page : 35 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

• Comments

The evaluation sheet is based on a functional assessment, with a
scoring rule that uses 0 to mark a functionality that is not covered by
the FLOSS project, 1 for partial coverage and 2 for complete coverage
(the product implements the required functionality). See Appendix 2
for a complete list of score tables.
After the individual evaluation, two different selection criteria can be
applied: strict (direct elimination as soon as software does not fulfill
the requirements formulated in the qualification step) or loose (rather
than eliminating non-eligible software, it classifies them while
measuring the gaps with applied filters).
The most relevant approach for SMEs is the loose selection, as the
strict one may in several circumstances not return a suitable solution.
The loose approach uses two weightings, one for functionality:

Level of requirement weight

required
functionality

+3

optional
functionality

+1

not required
functionality

0

and one for user's risk:

relevance weight

 Copyright FLOSSMetrics Consortium
35

Guide for SMEs

Deliverable ID: D8.1.1

Page : 36 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Irrelevant criterion 0

relevant criterion +1 or
-1

critical criterion +3 or
-3

another part of the QSOS project, the O3S tool allows for simple
graphing and comparison:

 Copyright FLOSSMetrics Consortium
36

Guide for SMEs

Deliverable ID: D8.1.1

Page : 37 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
37

Guide for SMEs

Deliverable ID: D8.1.1

Page : 38 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

5. Best practices for
FLOSS adoption

The migration and adoption process is a complex, multidisciplinary
effort that touches different areas and require a complete
understanding of how individual workflows are composed and
executed and how people interacts with IT systems in their daily work.
In this sense, a FLOSS migration is a major endeavor, and as most
complex efforts can easily go wrong. There are several hurdles in the
execution of a migration, and some of those hurdles can be avoided
easily by using simple practices. Most of the difficulties are not really
technical in nature, but organizational, and will require most effort
from the upper management; another important aspect is the social
impact of the migration (like user acceptance), that may require
special attention.

Management guidelines
The main drive for a successful migration to FLOSS always starts with

 Copyright FLOSSMetrics Consortium
38

Guide for SMEs

Deliverable ID: D8.1.1

Page : 39 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

a clear assessment of the IT landscape, a clear vision of the needs and
benefits of the transitions and continual support. The differences of
OS development models and support may require a significant change
in the way software and services are accounted for and procured, and
in general a shift of responsibility from outside contractors to in-
house personnel.

Be sure of management commitment to the transition
Management support and commitment have been repeatedly found to
be one of the most important variable for the success of complex IT
efforts, and FLOSS migrations are no exception. This commitment
must be guaranteed for a time period sufficient to cover the complete
migration; this means that in organizations where IT directors are
frequently changed, or where management changes in fixed periods of
times (for example, in public administrations where changes happens
frequently) there must be a process in place to hand over
management of the migration. The commitment should also extend to
funding (as transitions and training will require resources, both
monetary and in-house). The best way to insure continued
coordination is to appoint a team with mixed experiences
(management and technical) to provide continuous feedback and day-
to-day management.
troubleshooting point: if the only people working on planning the
migration is from IT/MIS, there may be insufficient information in
upper management and financial planning for continuing the
migration after the initial step.

Prepare a clear overview of what is expected from the migration or
adoption, including measurable benchmarks
The transition can be started for several reasons, including better
control on IT costs, independence from suppliers, flexibility or
support of open data standards. To be sure that the migration is
effectively producing benefits or is going accord to the migration plan,
it is fundamental to know beforehand what indicators will be used to
evaluate the progress. Those requirements must be realistic, in
particular expectations of TCO reductions must be compared with
publicly available data for comparison.

 Copyright FLOSSMetrics Consortium
39

Guide for SMEs

Deliverable ID: D8.1.1

Page : 40 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

troubleshooting point: if the only perceived advantage is that “the
software comes from the net for free”, there may be a set of wrong
assumptions that will probably lead to a final negative judgment on
the migration.

Make sure that the timetable is realistic
The introduction of a new IT platform will always require a significant
amount of time; as a rule of thumb the time to perform a full
transition to FLOSS may be considered to be comparable to that of the
introduction of a new company-wide ERP (enterprise resource
planning application); for smaller transitions, time effort should be
scaled accordingly.
Troubleshooting point: when migration time is measured in days, and
no post-migration effort is planned, the process may be forced to a
stop after the planned resources are expended.

Review the current software/IT procurement and development
procedure
As implementation effort is shifted from commercial to open source
software, the procurement and development process needs to be
updated accordingly. In particular, the focus may change from
acquisition to services, as less software is bought “shrink-wrapped”
(commercially bought), and this change may require changes in how
the internal IT budget is allocated.
Internally developed software will require a porting or a rolling
transition to new software that is either multi-platform or accessible
using standard interfaces (for example, web applications), and this
should be taken into account in the overall IT plan.
Troubleshooting point: When no change of procurement and
development is planned, the management may have not understood
the scope of changed required for the adoption of FLOSS.

Seek out advice or search for information on similar transitions
As the number of companies and administrations that have already
performed a migration is now considerable, it is easy to find
information on what to expect and how to proceed. In this sense, the

 Copyright FLOSSMetrics Consortium
40

Guide for SMEs

Deliverable ID: D8.1.1

Page : 41 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

COSPA project has developed an online knowledge base that is
accessible through the main COSPA site (www.cospa-project.org);
public administrations can also contact their local Open Source
Competence centre, that will provide information and support in the
migration process.

Avoid “big switch” transition, and favor incremental migrations
Most large scale migrations that are performed in a single, large step
(involving the abrupt change from one IT environment to the other)
are usually marred by extremely high support and technical costs.
While the need to support more than one environment does increase
support and management cost, “gentle” or incremental migrations
usually bring a better overall experience for the users and result in
minimal disruption on business processes.
An example of gentle migration can begin with the migration of server
side applications, that are usually standards or network-based and
thus easier to replace, leaving desktop and user-facing applications
last. Such a scheme can be depicted as: [KBST 06]

 Copyright FLOSSMetrics Consortium
41

Guide for SMEs

Deliverable ID: D8.1.1

Page : 42 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Assign at least a person to interacting with the OSS community or
the OSS vendor, and try to find online information sources
A significant advantage of OSS is the availability of online free
resources, in the form of knowledge bases, mailing lists, wikis
(collaborative sites) that may provide a substantial support in many
cases comparable to commercial offerings. The biggest problem is the
identification of such knowledge sources; in this sense assigning a
resources to find, categorize and interact with such sources is a way
to reduce the cost of support; a common way to provide a unified
source of information is by setting up a small Intranet web page with
links to online resources.
Troubleshooting point: when no one knows where to find information
on the tools that are in use, or when everyone has to search on web
sites on their own for finding usage tips.

Technical guidelines
A significant difference in FLOSS adoptions is the different
development model adopted by most open source projects, and the
difference in delivery of updates and support. This requires a change
in the way adoption and updates are handled, to reduce as much as
possible interoperability problems.

Understand the way OSS is developed
Most project are based on a cooperative development model, with a
core set of developers providing most of the code (usually working for
a commercial firm) and a large number of non-core contributors. This
development model does provide a great code quality and a fast
development cycle, but requires also a significant effort in tracking
changes and updates. The adoption of an OSS package should be
suggested when:

● when the project itself is “alive”, that is it does have an active
development community. See the previous chapter on how to
select and analyze a development project.

● when there is a clear distinction between “stable” and “unstable”
software. In many projects, there are two distinct streams of
development, one devoted to integrating the latest changes and
addition, and another focused on improving stability and bug
fixes; periodically, the developers will “freeze” development to

 Copyright FLOSSMetrics Consortium
42

Guide for SMEs

Deliverable ID: D8.1.1

Page : 43 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

turn the unstable version into the stable one, and create a new
development, bleeding-edge version. This distinction allows the
developers to satisfy both the users willing to experiment with
the latest functionality, and those using the software for day-to-
day operations, but requires an extra effort in collecting
information and new versions.

If new functionalities or fixes are necessary, it may be easier to ask for
a commercially supported version of the software; in many cases, the
commercial vendor will also contribute financially to the open source
project.
Troubleshooting point: when the IT manager or the developers think
that OS is some kind of commercial software that someone has put
for free on the net, and that it “just works”.

Create a complete survey of software and hardware that will be
affected by the migration, and what functionality the company is
looking for
There can be no successful migration when the initial situation is not
known. Most companies and administrations have no process in place
for auditing software and hardware platforms, and thus are unable to
quantify the number of tools and software that needs to be replaced
or integrated in an OSS migration. The survey process must also take
into account the number of concurrent users, average use across the
organization, and whether the software uses open or closed
communication protocols and data formats. This survey will be the
basis for the decision of what users will be migrated first, and for
taking into account the cost of software re-development or migration
to a different data format. Automated software inventory tools are
readily available, and may reduce the cost of performing the inventory
and allow for a stricter control on installed software (thus reducing
the maintenance cost).
Some of the aspects that should be surveyed are:

● used data format, both at the document exchange level, database
and network protocol level

● list of used applications, including those internally developed,
macros and active documents

● available functionality
● shortcomings and problems of the current infrastructure

 Copyright FLOSSMetrics Consortium
43

Guide for SMEs

Deliverable ID: D8.1.1

Page : 44 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

It is fundamental that the migrated software can fulfill the same
functional requirements of the current IT infrastructure, and usually
improve on that in functional terms or in inherent quality (like
availability, reliability, performance).

Use the flexibility of OSS to create local adaptations
The differentiating thing of OSS is the flexibility and freedom that it
gives to users and developers in creating new versions or adapted
versions of any package. This flexibility can greatly enhance the
perceived value of OSS, for example it is possible to create customized
packages that contain local configurations, special fonts and other
supplemental material like preset macros and templates commonly
used in the company. Also, custom look and feel may significantly
improve user acceptance, both by presenting a nicer looking desktop,
and by maintaining common links and menu entries.
These customization can be integrated in a simple way in the most
used Linux distributions, or by creating a local repository of software.
Note that in many cases, it is not necessary to produce software or
code, as most adaptations are related to selecting the appropriate
package, change the graphical appearance, or providing templates and
presets.

There is much more software available than what is installed by
default
Licensing or design issues limit substantially the amount of software
that is usually included in the default install of the most used Linux
distributions. For example, only a few include playback capability for
the most commons audio and video format, due to licensing and
patent issues; for the same reasons, some packages that may be of
interest to only a minority of users are not included.
For this reason, it is important to research and include in the default
installs additional package that may help in the transition period;
such packages include additional fonts, multimedia tools, and other
packages that may be useful in a mixed environment.

 Copyright FLOSSMetrics Consortium
44

Guide for SMEs

Deliverable ID: D8.1.1

Page : 45 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

In selecting packages, always favor stability over functionality
Among the many potential packages available for every function,
there is always a balance between functionality and stability. In
general, among the potential candidate packages that satisfy the
functional requirements for the migration the preference should be
given to the one that is more stable, thus having a longer real-world
usage (and thus more information available for the administrator) and
lower variability between different releases.
Troubleshooting point: When the IT administrator wants the latest
version of everything on user's desktop.

Design the workflow support infrastructure to reduce the number
of “impedance mismatches”
Every transition from an ICT infrastructure to another leads to some
“impedance mismatch”, that is to small differences and
incompatibilities; this can be observed for example by translating
documents from one data format to another. The overall
infrastructure should reduce the number of such transition points, for
example by redesigning the document templates in the ODT open
format instead of reusing previously developed versions made using
proprietary tools. This reduces greatly the formatting and style
differences that arise when one format is translated into another.

Introduce a trouble ticket system
A difficulty of every new IT deployment is the assessment of user
satisfaction and the degree of acceptance of the new solution,
especially in medium sized companies when user feedback is more
difficult to collect. An online trouble ticket system may provide an
easy and simple way to collect weak points in the deployment, and
can help in identify users that may need additional training by
analyzing the per-user submission statistics. It may also point to
weaknesses in the deployment, for example by pointing to several
trouble tickets related to a specific area.

Compile and update a detailed migration workbook
A large scale migration effort requires a coordinated action, and clear

 Copyright FLOSSMetrics Consortium
45

Guide for SMEs

Deliverable ID: D8.1.1

Page : 46 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

and updated information. The best way to provide this information is
through a “migration workbook”, a single information point that
provides the collection of documentation prepared for the migration
(including the rationale, the detailed plan and the technical
documentation) and the timetable, updated according to the project
progress. This also simplifies project management when there is a
change in the team performing the migration.

Social guidelines
A migration or adoption is not only based on technical basis, but does
also have a social impact. As FLOSS is still not widely known, many
myths and preconceived ideas may be hampering adoption by end
users.

Provide background information on OSS
A significant obstacle of OSS adoption is the acceptance by the user,
that usually has a very limited knowledge of open source and open
data standards. In many cases, OSS is perceived as lower quality as it
is “free”, downloadable from the internet like many shareware
packages or like amateur projects. It is important to cancel this
perception, and to provide information on how OSS is developed and
what is the rationale and business model that underlie it. The chapter
on "FLOSS myths" may be a starting point for providing factual
information.

Don't force the change on the users, provide explanations
The change of IT infrastructure will force a significant change in how
the users work and use internal resources; this change may cause
resistance by the users. Such change may be simplified by explaining
clearly why and how the change will happen, and what benefits will be
introduced in the long term both internally (like lower cost, better
flexibility and security) and externally (openness, adherence to
international standards, less burden on external users).
It is important to provide enough information and support to be able
to skip the “opposition gulf”: [IBM 06]

 Copyright FLOSSMetrics Consortium
46

Guide for SMEs

Deliverable ID: D8.1.1

Page : 47 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Troubleshooting point: when internal users believe that the migration
is done to pay software less

Use the migration as an occasion to improve users skill
As training for the new infrastructure is required, it may be used as a
way to improve overall ICT skills; in many companies and public
administrations for example little formal training is usually
performed on users. This helps not only in increasing confidence, but
can also used to harmonize skills among groups and in general
improve performance.
This may rise some resistance from the so called “local gurus”, that
may perceive this overall improvement as a lessening of their social
role as technical leaders. The best way to counter such resistance is to
identify those users, and suggest them to access higher-level training
material (that may be placed in a publicly accessible web site, for
example).
Also, it may be useful to identify local “champions”, that is local
FLOSS enthusiasts, that can provide peer support to other users, and
offer them additional training occasions or management recognition.
In general, it is useful to create an internal Intranet accessible page
that provides links to all the different training packages.

Make it easy to experiment and learn
The licensing freedom that is the main point of OSS allows for free
redistribution of software and training material; in this sense,
providing users with Linux live-CDs (that require no hard disk

 Copyright FLOSSMetrics Consortium
47

Guide for SMEs

Deliverable ID: D8.1.1

Page : 48 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

installation) or printed material that can be brought home may help in
overall acceptance.

 Copyright FLOSSMetrics Consortium
48

Guide for SMEs

Deliverable ID: D8.1.1

Page : 49 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

6. FLOSS-based
business models

One of the first categorization of potential business models was
designed in 2001 in the work of the European Working Group on Libre
software[DB 00]. The taxonomy, adapted to the recent developments
of the market, is:

● Externally funded ventures
● Public funding
● `Needed improvement' funding
● Indirect funding

● Internally funded or revenue based
● `Best knowledge here'' without constraints
● `Best knowledge here' with constraints
● `Best code here' without constraints
● `Best code here' with constraints
● `Special' licenses

● Unfunded developments

 Copyright FLOSSMetrics Consortium
49

Guide for SMEs

Deliverable ID: D8.1.1

Page : 50 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Externally funded ventures
We consider in this category groups or companies which develop open
source software through the initiative (at least in the financial sense)
of some external organization. Usually those external entities
determine how the funds are to be spent, and where the development
efforts are headed. The developer entity just follows those more or
less strict guidelines. In some sense, it could be said that the external
entity ‘sponsors’ the development of some given open source
software. In this category, we can distinguish at least three models,
according to who funds the project and why. We have called them
public funding, ‘needed improvement’ funding, and indirect funding.

Public funding
Working groups or individuals receive funding for the development of
a good software product, documentation, test cases or whatever.
Usually, the only constraints imposed by the funding entity are that
funds must be used to complete the project. This is typical of large
computer science projects, and the funding usually comes from
universities or from national science grants. In fact, many large
projects in radioastronomy, computational chemistry, and biology are
funded this way. In addition, some consortium for the development of
Internet tools and technologies have (or have had) such a funding
structure. It is important to notice that in these cases the funding
institution is not expecting to recover the investment, or to directly
benefit from it. Usually, some expectation of social improvement is
the reason for the funding.

"Needed improvement" funding
A company or organization may need a new or improved version of a
software package, and fund some consultant or software
manufacturer to do the work. Later on, the resulting software is
redistributed as open source to take advantage of the large pool of
skilled developers who can debug and improve it.
A good example of the advantages of this model can be found in an
article written by Aari Jaaksi, open source manager at Nokia,
describing the experience of designing the Nokia N770 and N800

 Copyright FLOSSMetrics Consortium
50

Guide for SMEs

Deliverable ID: D8.1.1

Page : 51 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

products, based on Linux: "The biggest cost savings came from the
utilization of already available components. We utilized several free
components and subsystems as such, with no modifications. We also
improved several components to better meet our requirements. Such
improvement is cheaper than creating the needed functionality from
scratch. Some two-thirds of the code of the Nokia 770 is licensed
under an open source license. These components made it possible for
us to build the software cheaper than we could have done using
closed and proprietary technologies" [Jaak 06]
In [Gosh 06] it is estimated that it is possible to obtain savings in
terms of software research and development of 36% through the use
of FLOSS; this is, in itself, the largest actual "market" for FLOSS, as
demonstrated by the fact that the majority of developers are using at
least some open source software within their own code (56.2%, as
reported in [ED 05]).

In at least one instance the benefits of using FLOSS for product
development have been evaluated, in the context of the European INES
project[INES 06]. The project researched the use of FLOSS within
industrial control systems developed by European SMEs, and
measured the resulting economic impact:

It is interesting to observe that companies that are adopting this
model in many case contribute back the code that is developed even
when not explicitly forced by the FLOSS project license, to reduce the
cost of integrating product-specific patches and to leverage external
support.

 Copyright FLOSSMetrics Consortium
51

Economic benefit % of companies:

Internal Replications 100%
Increased Profit 100%
Reduced Time to Market 84%
Reduced Development Costs 79%
Reduced Product Costs 79%
Improved Code quality 79%
Improved Design Re-use 79%
ROI > 200 over 3 years 74%
Increased Product Reliability 68%

Guide for SMEs

Deliverable ID: D8.1.1

Page : 52 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Indirect funding / Loss-leader
A company may decide to fund open source software projects if those
projects can create a significant revenue source for related products,
not directly connected with source code or software. One of the most
common cases is the writing of software needed to run hardware, for
instance, operating system drivers for specific hardware. In fact, many
hardware manufacturers are already distributing gratis software
drivers. Some of them are already distributing some of their drivers
(specially those for the Linux kernel) as open source software.

The loss-leader is a traditional commercial model, common also
outside of the world of software; in this model, effort is invested in an
open source project to create or extend another market under
different conditions. For example, hardware vendors invest in the
development of software drivers for open source operating systems
(like Linux) to extend the market of the hardware itself. Other
examples are related to the establishment of a platform or a specific
protocol; for example the Eclipse project was extremely successful in
creating a large ecosystem of tools and projects that complement and
enhance it. Most companies have dropped their own internally-
developed integrated development environment, and are using Eclipse
as a basis even for commercial products.

Internal use
Some projects can get started as a lower-cost alternative to
proprietary systems. In this case, the developer company does not
have (at least in the beginning) any plan to get external income related
to the sale of the software or services related to it. The company
develops some system because it is useful for them, and later decides
to make it open source, and distribute it widely, just to benefit from
the open source development source. Probably they will get some
contributions, improvements and bug fixes from external developers
interested in the software, and some bug reports. Later on, the
product may even reach some market acceptance, and the developer
company could even get some economic benefits from it.
For instance, a large enterprise with several thousand desktop
computers can decide to create some software internally, and make
this software available under an open source license to get the

 Copyright FLOSSMetrics Consortium
52

Guide for SMEs

Deliverable ID: D8.1.1

Page : 53 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

benefits of a larger base of developers that may be interested in
helping out. An interesting aspect is that recent surveys found that
25% of companies are working with other companies in the same
sector to develop industry-specific open source software [CIO 07].

"Best knowledge here'' without constraints
In this model, a company works as a paid consultant, with contracts
granted on the basis of the higher level of knowledge of their
employees. Any company can implement this model, as there are no
limitations that prevent a competent technician from gaining an
arbitrarily deep experience of open source software systems. Of
course, this also means that any firm using this model is exposed to
the risk of being superseded by someone else, if the level of
competence is reached but not maintained. This is one of the pure
"service based" models, that will be further refined later on in this
chapter.

"Best knowledge here" with constraints
To prevent competitors from "stealing" customers, a firm can place
arbitrary limitations on the process of knowledge sharing, through
patents or through additional copyrights that are not conferred in a
direct way through the FLOSS license. It can be implemented by
placing under a more restrictive license just a small (but fundamental)
part of the code, usually considering it as a "black box'', or by adding a
set of copyrighted materials not freely redistributable, and adding in
the license an obligation to show them to the end-user ("badgeware"),
thus preventing others from appropriating the code.
As a special case, there may be a need for external, non-code related
conditions (like code certifications) that can be inherently costly to
reproduce, and those can be added to a code distribution to create a
non-transferable asset. For example, the CODE*ASTER project is a
complex simulation systems used by the French utility company EDF
in systems as complex as nuclear power plants. The project has a GPL
version, and a quality-checked and certified version that has passed
the national certification tests for use in safety-critical systems
design. Other examples are security certifications like EAL4+ that
have been recently obtained by major Linux vendors.

 Copyright FLOSSMetrics Consortium
53

Guide for SMEs

Deliverable ID: D8.1.1

Page : 54 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

"Best code here" without constraints
In this model, a company develops some open source code, and sells
consulting and maintenance services on it. This is similar to "best
knowledge here", but with an additional advantage in terms of time,
since a competitor needs some months to create a similar code, or to
understand all the intricacies of someone else's source. This gives a
time advantage to the company or group that creates the software in
the first place.

"Best code here" with constraints/Time-decaying licenses
An interesting twist in licensing for OSS is that of time-decaying
licenses, where a software artifact changes license with time or with
some specific event (for example, the release of a new version of the
code). The first known example of this model was the Alladin
Ghostscript postscript interpreter, and recently some security
companies provide up-to-date security signatures to paying
customers, and release them under a public license after some days.

This model is especially suited to rapidly changing software or other
material (for example, security and virus signatures) and less
practicable for software, because the old version becomes a basis to
create an improved product that may be competitive with the one
under the commercial license. This is exactly what happened to
Alladin, that found an open source competitor (GNU Ghostscript)
based on a previous version of the code, plus many improvements
contributed by open source developers.

Dual licensing
One of the few models that have no counterpart in the commercial
software world, Dual licensing is used by companies that want to
profit from the companies that want to use or leverage an open
source package without standing the redistribution conditions of the
OS license. For example, the MySQL database has two licenses, one
GPL (for OSS usage) and a commercial one. The customer that wants
to use MySQL in a commercial product without distributing the code
pays for a commercial license.

Many other project are starting to use such a scheme, that mixes the

 Copyright FLOSSMetrics Consortium
54

Guide for SMEs

Deliverable ID: D8.1.1

Page : 55 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

traditional commercial software model and allow to pay for continued
development; the downside is that the model can be effectively used
only for source packages that needs to be linked in with the code for
maximum efficiency or because there is no common protocol for data
exchange. This means that for example dual licensing is difficult for
packages like mail servers, that use common standardized protocols
to communicate with mail clients.

Dual licensing requires some specific legal and community aspects to
be handled; for example, patches or modifications from external
contributors require an explicit author acknowledgment of both
licenses, and management of the community requires an accurate
management of the border between the commercial and open source
aspects of the project.

Unfunded developments
If there is enough `network effect', there may be no need for funding,
just a minimal effort for the organization of releases and patches.
Examples of these kinds of open source projects are the Linux kernel,
GNU/Linux distributions like Debian, BSD-based operating systems
such as FreeBSD, NetBSD, or OpenBSD, and the Mesa OpenGL-like
library. These efforts started in many cases as the effort of a single
man, or of a small group, and through good organization and
volunteer work they created an extended networked structure that
maintains the code. Even with some (limited) funding for some
projects, all of these efforts become successful without an external
grant or without explicit money offerings. In fact, this is the case for
hundreds of small open source projects.

Specialized Service-based business models
Service-based business models are based on the idea of optimization,
that is the capability by a specialized company to provide a service at
an overall price for the customer that is less than the one the
company would incur in if doing it by themselves. To get an overview
of the areas that are subject to this potential optimization, we can
provide an overview of the steps that are part of the adoption of a
new ICT technology:

 Copyright FLOSSMetrics Consortium
55

Guide for SMEs

Deliverable ID: D8.1.1

Page : 56 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

• software selection (if Off-the-shelf components are used)8

• installation
• integration
• technical suitability certification
• legal certification
• training
• ongoing maintenance and support contracts9

• at the end, migration from old system to the new one

As we will see, only a few companies are specialized in a single model,
but compose them together to create service packages, in a sense
making these sort of "business models building blocks"; we will
however first provide an overview of each block to provide an
estimate of effort and difficulties that are inherent in each step.

Software selection support
Software selection is really a multi-step phase, that starting from the
identified needs and a knowledge of the software market selects a
combination of packages that minimize the amount of code that
needs to be developed. This minimization process is complex, taking
into account not only the technical characteristics of the software
being considered, but also must provide an evaluation of the
“liveliness” of the OS project, the probability that its development will
continue, and the availability of consultants and documentation.

A company that wants to offer this kind of service needs a substantial
investment in terms of knowledge of the different packages and tools
available. As the number of projects that are amenable of business or
PA use can be estimated to be over 18000, there is a substantial effort
just in following the new updates or announcements. This is further
complicated by the fact that most project do not have an explicit
“marketing mechanism”, that spreads information on features and
capabilities on a software package like commercial software firms.
This means that companies that want to offer software selection

8 there is an additional first step, identification of needs, that is not in itself specific to OSS, but is
usually part of the responsibilities of the internal ICT staff of the company or the administration that
needs to perform the migration. For this reason it is not included in the list

9 Keen, P. "managing the economics of information capital": maintenance is 40% per year for 5 years on
average of the initial cost of software

 Copyright FLOSSMetrics Consortium
56

Guide for SMEs

Deliverable ID: D8.1.1

Page : 57 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

consulting services must dedicate a certain effort just in monitoring
web sites and mailing lists, and extract from there information on new
versions or new packages; this effort can be estimated in 1 man/hour
per day for limited segments (for example, only Java enterprise
middleware) to 5 man/hours per day for many different software
segments.

The actual consulting activity is fairly simple, and consists in in-depth
interviews and analysis of the need of the customer, followed by the
preparation of a list of suggested packages. It is also possible to
estimate the cost of integration, using data from the software
engineering community related to COTS projects (Common Off The
Shelf).

Installation support
A very common support activity in the OSS community is that of
installation; this comes from two different aspects: the great
modularity of software (that forces the installation of many, different
components to create a working system) and the relative unavailability
of sophisticated software installers, common in the commercial world.

This is however changing, thanks to the standardization in the Linux
world of packaging systems, that makes nearly non-necessary the
installation of software from source code components. The availability
of package installers based on the RPM (RedHat package Manager,
used also by Novell's Suse Linux and Mandriva Linux) and DEB (used
by Debian and derivatives, like Ubuntu) augmented with dependency
maintenance systems have greatly reduced the complexity of
installation, now mostly related to the modification of the suitable
configuration files to adapt the installation to a specific ICT
environment.

Integration support
Another of the most common steps in OSS-based consulting is the
integration step, that relates both to the specific configuration step
necessary to “fit” an open source component in an existing structure,
and to the custom development necessary to add the missing

 Copyright FLOSSMetrics Consortium
57

Guide for SMEs

Deliverable ID: D8.1.1

Page : 58 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

functionalities or correcting the incompatibilities.

Integration may require a substantial effort for large scale projects,
with a relatively large amount of custom coding or the integration of
commercial components if no other choice is possible. This variability
is the reason behind the strong push towards standards (both de-
facto and de-jure) that is the simplest way to reduce interfacing cost
between disparate software components.

Technical suitability certification
This is mostly done by integrators and external consultants, and may
come in two shape: certification of adherence to an international
standard (for example security or quality standards) and certification
of suitability for a specific environments. In a sense, in both cases the
integrator or certifier provides an insurance that the software package
complies with a specified set of rules, and is legally liable for such
compliance. Limited scope certifications, like security assurances, are
quite within scope of SMEs, while large scale quality assurance of
components is quite difficult to attain if the open source project itself
does not have an in-place explicit mechanism for project
management10.

Most Linux distributors performs this suitability test in a very simple
way, by selecting the most plausible candidate version of a source
code package depending on the distribution target (for example, in so
called “enterprise edition” distribution only stable versions are used,
while for "bleeding edge" distributions the latest unstable version is
selected).

Legal certification
This is a relatively recent model, that emerged from the perceived
problems of mixing code from multiple licenses, and from several
lawsuits11. Legal certification is related to the following areas:
10For example, the open source CODE-ASTER simulation package by EDF (the French utility) is quality
certified and also certified suitable for use in the simulation and design of nuclear power plants; and the
AdaCore ADA environment (based on open source components) is certified for avionics and high-
availability environments.
11It is interesting to notice that most of these lawsuits are only marginally related to open source
licenses, and that the uncertainty has been in some way spread by commercial companies that are being

 Copyright FLOSSMetrics Consortium
58

Guide for SMEs

Deliverable ID: D8.1.1

Page : 59 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

• correct use of OSS and commercial licenses
• patent certification
• other Intellectual Property certification

The first area is related to the mixing and correct use of components,
that may have different licenses and different restrictions. While more
than 70% of the open source code is actually released under the GPL,
more than 50 other licenses exist, and some fundamental components
are released under a non-GPL license (the Apache foundation
software, Mozilla/Firefox or the Eclipse integrated development
environment).

When using and integrating many different components, it is
fundamental to be able to verify that all code is properly used and
accounted for. This is really a task that requires legal capabilities,
more than technical ones, and for this reason is perceived by the OSS
community to be a “tangential” model.

Patent and IP certification provides a form of “insurance” against third
party claims on software patents or other copyrighted material that
may be in the OSS used in a project; as any insurance form, it is quite
demanding in terms of monetary funds, as patent claims may give
raise to multi-million Euro lawsuits (see for example the recent patent
lawsuit by Eolas against Microsoft corp. with more than 500 million
dollar in requested damages).

Training
Training is another commonly found business model, as many open
source projects do not have an official, sanctioned training process
that is comparable to that of commercial companies. Training is
usually personnel-intensive, and requires some effort for the creation
of the initial training material to be used during the courses. A good
estimate of work needed is that it is necessary to invest around 3 to 8
hours of course material preparation for each hour of training
delivered12.
threatened by open source in their market.
12The variability depends on the complexity of the course and the specificity of the knowledge to be
transferred.

 Copyright FLOSSMetrics Consortium
59

Guide for SMEs

Deliverable ID: D8.1.1

Page : 60 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

The simplicity of the model and the fact that it does not require
software development means that it is quite easy for established
training companies to compete for offering such services; also, the
largest OSS project also usually have an official training programs (for
example JBoss, Linux distributors RedHat and Novell/Suse).

Ongoing maintenance and support contracts
For most complex systems there is a continuous need for support and
maintenance, both for bugs and feature enhancements and for the
adaptation of the system to the changing IT environment. Support
contracts usually are time-based (the most common is a contractual
period of one year, renewable) and level-based. Levels are commonly
three (corresponding to “bronze”, “silver” and “gold” support
services), with varying degree of guaranteed service. For example,
bronze level usually provides email-based support during work hours
and access to a knowledge base; silver adds voice support and
precedence of incidents over bronze contracts, and gold adds 24/7
live support13. While it is reasonably easy for an SME to offer standard
support services, 24/7 offerings may require a slightly larger
personnel base to guarantee coverage under every circumstance.
Another model that is gaining ground is the acquisition of “tokens”,
that are later used to buy specific support activities (for example, a
support request may require one token, and an urgent one-“priority”
may be bought for three tokens). This way, users may decide in a
flexible way how to leverage the support offer without restrictions.

Taking into account the characteristics of support questions, it is
possible to observe that most calls are easily answerable, even with
only moderately skilled people (around 80% are “easy” calls); the
remaining 20% usually require a much greater effort. It is possible
sometimes to create “pyramids” of support, where one company
provides support for those 80% of easy calls, and moves the harder
ones to another company that is more specialized on a specific
package or a specific issue. This requires of course the capability of
categorizing calls appropriately, and requires the existence of specific
support contracts between the participants; this is usually possible
13This subdivision has been extracted from support contracts of several ICT support vendors, but slight
variation may be found- for example, 4 levels instead of 3, or different kind of support material other
than the knowledge base.

 Copyright FLOSSMetrics Consortium
60

Guide for SMEs

Deliverable ID: D8.1.1

Page : 61 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

only if the customer base is large enough, and so is more amenable to
the medium companies.

The support model is used by many companies that turned a
commercial package (not completely successful in the commercial
market, or unable to completely fulfill its market potential) into an
open source one; the underlying idea is that the authors of the code
are supposed to be the most qualified experts for support it. The first
famous example of this model was the Zope application server, with
many others in active existence (for example, the computer aided
design OpenCascade toolkit, Compiere, Alfresco and many others). It
is interesting to notice that contribution from the outside are usually
received from outside participants even in the case of very specific
application areas, like for OpenCascade14

Migration services
Similar to integration services, migration is based on the deep
knowledge of both the starting and end IT environment. Most
migration services are based on software packages that help in
automating the migration (for example of user configurations), or on
pre-configured “packages” of OSS that provides complete substitutes
of proprietary environments. Examples may be mail/groupware
systems or desktop operating system replacements. Migration services
usually require a specific integration step in addition to the base
migration, and for some large scale effort may require coordination
among different companies, offering coordinated service (for example,
one specialized in porting custom code, one in migrating mail
services, etc.)

Commercial-on-open
One of the simplest model for software companies is selling a
proprietary software package on an open source one. It may be simply
a matter of running platform (like having a commercial package
running on Linux) or it may leverage an open source project with
some commercial module. Examples of this abound, from commercial
database systems, proprietary payroll or financial applications, to
14It has been reported that 20% of the “package value” of OpenCascade has been contributed by outside
partners and developers; both in term of code and documentation and ancillary material. This
percentage has been found in other projects, like JBoss.

 Copyright FLOSSMetrics Consortium
61

Guide for SMEs

Deliverable ID: D8.1.1

Page : 62 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

module designed to improve the usability and manageability of an
existing open source project.

This second example is becoming one of the main options for funding
an OSS project, and leverages the development of the OSS component
to provide added value that may be of interest only to a part of the
community, for example providing easy-to-use interfaces for a
complex system. As the example in the previous section on time-
decaying licenses, if the project is successful there is a risk of
competition with an open source project designed to fill exactly the
same need.

Any company that plans to follow this model should devote some
effort to track the evolution of the OSS platform, and somehow
participate (for example, with an active participant in the mailing lists
of the project). This has the double advantage to provide an insight
into the evolution of the platforms and new, potentially useful
features, but also to be “good citizen” of the OSS project.

Mediation services
Mediation services are relatively new on the market of OSS models,
and are based on the fact that for companies it is difficult to interact
with sparse communities like some OSS projects. Mediation services
provide a sort of a single point of contact, that gathers information
from the developers, mailing lists, forum and such and forwards
requests and bug-fixes back. These services are especially useful
when the company is willing to pay for modification or changes to the
code, but is unable to find a suitable service company. Usually these
mediation companies try to contact directly the developers, or to find
support companies that demonstrate experience in the specific
package; after development, they add some certification and
integration effort to deliver a single package to the customer.
This is useful especially for large scale efforts, where many different
communities may be involved, or when there is no clear choice to ask
for support or development. Large scale projects (like Apache, JBoss
and others) usually have one or more company that provides already
this kind of mediation.

 Copyright FLOSSMetrics Consortium
62

Guide for SMEs

Deliverable ID: D8.1.1

Page : 63 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Custom development
Another model that is just an application of a traditional one, the
custom development is simply the offering of custom coding on an
open source project. As such, there is usually a form of specialization
on a single project or class of projects (for example, device driver
development or open source-based J2EE systems). A company that
wants to use this model should add to the traditional model an
activity related to tracking the evolution and roadmap of the project
on which it is specializing, in a way similar to that described in the
previous commercial-on-open model.

Assessment of FLOSS business models usage
To assess the real business models adopted by FLOSS companies, we
prepared an initial list of 120 companies using some popular open
source news websites as source15; this list was further refined by
eliminating companies that were not really adopting FLOSS, even
using a very relaxed definition. In the specific, any company that
allowed source code access only to non-commercial users, or that did
not allowed for redistribution was dropped from the list; also,
companies for which no information was available, or for which no
clear product or service was identifiable was equally eliminated.

One of the companies included (Sourceforge, from the OSTG group) is
not open source in itself16, but represents an example of an “ancillary”
model, as the site itself hosts more than 100000 open source projects
and provides supporting services like mailing lists, source code
versioning systems and file distribution. Also, companies that have a
significant OSS contribution, but for which FLOSS is not the core
business model were not included17.

15Among them: FreshMeat, Slashdot.org, OSNews, LinuxToday, NewsForge and some blog sites
devoted to FLOSS business models like those of Roberto Galoppini, Matt Asay, Fabrizio
Capobianco. Additional information was retrieved from Google searches.
16The original code for the SourceForge collaborative development environment was open source,
and from its change of license several “forks” appeared, including Gforge.
17This for example includes IBM, HP and Sun; all of which are important FLOSS contributors, but
for which open source software is just one of the overall revenue streams (along hardware, IT
services and more).

 Copyright FLOSSMetrics Consortium
63

Guide for SMEs

Deliverable ID: D8.1.1

Page : 64 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

An initial set of variables were selected, including: choice of licenses,
product offering (whether a single version or multiple version of a
software system are offered), services offered (divided into
installation support, integration, training, consultancy, legal and
technical certifications), type of contracts offered (subscriptions,
licensing or per-incident) and metering form. Additionally, literature
from each company's website was retrieved to find references to the
business model adopted and how the model impacts the value
proposition of the firm. Mailing lists and search engine searches were
performed to obtain indicative references of the relationship of the
company with the development community, and if there is an
external, non-company based support activity in the form of websites,
wikis and knowledge bases.

The collected data was then tabulated, eliminating non-significant
variables; for example, coupling together installation, training,
support and consulting that were found to be part of the offering of
most of the companies that offered support services (and coupled in a
single Installation/Training/Support/consulting variable, ITSC). The
significant variables left are main revenue generation (the service or
contractual offer that provides the main revenue to the company) and
licensing model. The first is further subdivided into Selection services
(finding appropriate FLOSS packages for a need), ITSC, subscription (a
recurring license) and one-time licensing. The licensing model is
obtained by looking at the licensing scheme adopted by the company
and whether the company services were covering a single software
project or a set of projects. By performing a simple cluster analysis on
the results, it was possible to identify 6 main models and a
"remainder" group:

 Copyright FLOSSMetrics Consortium
64

Guide for SMEs

Deliverable ID: D8.1.1

Page : 65 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
65

Main Licensing model Main revenue generation

Company Badgeware Pure OSS selection ITSC Subscription licensing

d
u

a
l
lic

.

Funambol l l l

Lustre l l

MuleSource l l l l

Mysql l l l

OpenClovis l l

Pentaho l l l

sleepycatdb l l

S
p

lit
 O

S
S

/c
o

m
m

e
rc

ia
l
re

le
a

s
e

s

Adaptive Planning l l

Alterpoint l l l

Altinity l l l

Codeweaver (WINE) l l

Coupa l l

Digium (Asterisk) l l

Enormalism l l

EnterpriseDB l l

GreenPlum l l

GroundWork l l

Hyperic l l

JasperSoft l l

KnowledgeTree l l

OpenCountry l l

Open-Xchange l

NoMachine NX l l

rPath l l

Scalix l l

Sendmail l l

Smoothwall l l

Sourcefire (SNORT) l l

Splunk l l

SSLExplorer l l

SugarCRM l l l

TenderSystem l l l

VirtualBox l l

Vyatta l l l

XenSource (Xen) l l

Zend (PHP) l l

ZIMBRA l l l

B
a

d
g

e
w

a
re

1bizcom l l

CATS applicant tracking l l

EmuSoftware/Netdirector l l l

Jbilling l l

OpenBravo l l

OpenEMM l l

OpenTerracotta l l

SocialText l l

p
ro

d
u

c
t

s
p

e
c
ia

lis
ts

Alfresco l l l

Babel l l

CentraView l l

CleverSafe l l

Compiere l l l

Exadel l l

Jitterbit l l l

Mergere l l

Mindquarry l l

Mirth l l

OfBIZ l l

Qlusters (OpenQRM) l l

Symbiot/OpenSIMS l l

Talend l l

UltimateEMR l l

VISTA l l

vTiger l l

Zenoss l l

p
la

tf
.

P
ro

v
id

. Jboss l l l l

RedHat linux l l l

Sourcelabs l l l l

SpikeSource l l l l

SUSE Linux l l l

WSO2 l l l

ayamon l l l

Enomaly l l l

navica l l

openlogic l l

Optaros l l l

x-tend l l l

O
th

e
r

CiviCRM l

Eclipse l

Mozilla l

OSAF Chandler l

Sourceforge

dual
licensing

OSS and
commercial

versions

multiple
packages
covered

s
e

le
c
ti
o

n
 –

c
o

n
s
u

lt
in

g

Guide for SMEs

Deliverable ID: D8.1.1

Page : 66 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

The 6 main clusters identified are:

• Dual licensing: the same software code distributed under the
GPL18 and a commercial license. This model is mainly used by
producers of developer-oriented tools and software, and works
thanks to the strong coupling clause of the GPL, that requires
derivative works or software directly linked to be covered under
the same license. Companies not willing to release their own
software under the GPL can buy a commercial license that is in a
sense an exception to the binding clause; by those that value the
“free as in speech” idea of free/libre software this is seen as a
good compromise between helping those that abide to the GPL
and receive the software for free (and make their software
available as FLOSS) and benefiting through the commercial
license for those that want to maintain the code proprietary. The
downside of dual licensing is that external contributors must
accept the same licensing regime, and this has been shown to
reduce the volume of external contributions (that becomes
mainly limited to bug fixes and small additions).

• Split OSS/commercial products: this model distinguish between
a basic FLOSS software and a commercial version, based on the
libre one but with the addition of proprietary plugins. Most
companies adopt as license the Mozilla Public License, as it
allows explicitly this form of intermixing, and allows for much
greater participation from external contributions, as no
acceptance of double licensing is required. The model has the
intrinsic downside that the FLOSS product must be valuable to
be attractive for the users, but must also be not complete
enough to prevent competition with the commercial one. This
balance is difficult to achieve and maintain over time; also, if the
software is of large interest, developers may try to complete the
missing functionality in a purely open source way, thus reducing
the attractiveness of the commercial version.

18An exception is MuleSource, that uses a MPL+Attribution license similar to the “badgeware”
license described later. As the MuleSource CEO mentions, “So, if you use Mule in your software product and
sell it commercially, then you are required to either make a licensing deal with us or keep the "powered by Mule" logo
visible.” It is still debated by the community and experts if “badgeware” licenses are really open source; some of those
have been submitted to the Open Source Initiative for evaluation.

 Copyright FLOSSMetrics Consortium
66

Guide for SMEs

Deliverable ID: D8.1.1

Page : 67 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

• Badgeware: a recent reinvention/extension of a previous license
constraint19, that is usually based on the Mozilla Public License
with the addition of a “visibility constraint”, the non-
removability of visible trademarks or elements from a user
interface. This allows the company to leverage trademark
protection, and allows the original developers to receive
recognition even if the software is resold through independent
resellers.

• Product specialists: companies that created, or maintain a
specific software project, and use a pure FLOSS license to
distribute it. The main revenues are provided from services like
training and consulting (the “ITSC” class) and follow the original
“best code here” and “best knowledge here” of the original EUWG
classification [DB 00]. It leverages the assumption, commonly
held, that the most knowledgeable experts on a software are
those that have developed it, and this way can provide services
with a limited marketing effort, by leveraging the free
redistribution of the code. The downside of the model is that
there is a limited barrier of entry for potential competitors, as
the only investment that is needed is in the acquisition of
specific skills and expertise on the software itself.

• Platform providers: companies that provide selection, support,
integration and services on a set of projects, collectively forming
a tested and verified platform. In this sense, even linux
distributions were classified as platforms; the interesting
observation is that those distributions are licensed for a
significant part under pure FLOSS licenses to maximize external
contributions, and leverage copyright protection to prevent
outright copying but not “cloning” (the removal of copyrighted
material like logos and trademark to create a new product)20. The
main value proposition comes in the form of guaranteed quality,
stability and reliability, and the certainty of support for business
critical applications.

19The original BSD license introduced the “advertising claim”, that required the licensee to
maintain in the advertising material mentioning feature or use of the software the wording “This
product includes software developed by the University of California, Berkeley and its
contributors”.
20Examples of RedHat clones are CentOS and Oracle Linux.

 Copyright FLOSSMetrics Consortium
67

Guide for SMEs

Deliverable ID: D8.1.1

Page : 68 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

• Selection/consulting companies: companies in this class are not
strictly developers, but provide consulting and
selection/evaluation services on a wide range of project, in a way
that is close to the analyst role. These companies tend to have
very limited impact on the FLOSS communities, as the evaluation
results and the evaluation process are usually a proprietary
asset.

The remaining companies are in too limited number to allow for any
extrapolation, but do show that non-trivial business model may be
found on ancillary markets. For example, the Mozilla foundation
obtains a non trivial amount of money from a search engine
partnership with Google (an estimated 72M$ in 2006), while
SourceForge/OSTG receives the majority of revenues from ecommerce
sales of the affiliate ThinkGeek site; it is possible to classify those as
“public funding” and “indirect funding” following the EUWG
classification [DB 00].

 Copyright FLOSSMetrics Consortium
68

Guide for SMEs

Deliverable ID: D8.1.1

Page : 69 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Bibliography

[Aug 04] Augustin, L. Living with open source: the new rules for IT
vendors and consumers. OSBC 2004 conference

[Cam 06] Campbell, J. Due Diligence at Eclipse: How it Benefits our
Community. EclipseCon 2006 presentation

[Car 07] Carbone, P. Value Derived from Open Source is a Function of
Maturity Levels, OCRI conference "Alchemy of open source
businesses", 2007

[CIO 07] CIOInsight, CIOINSIGHT OSS survey 2007.

[COS 05] EU COSPA project, D6.1 Report evaluating the costs/benefits of
a transition towards ODS/OS.

[Cox 07] Cox, M. Information sources. Blog entry,
http://www.awe.com/mark/blog/200704101400.html

[DB 00] Daffara, C. Barahona, J.B. Free Software/Open Source:

 Copyright FLOSSMetrics Consortium
69

Guide for SMEs

Deliverable ID: D8.1.1

Page : 70 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Information Society Opportunities for Europe? working paper,
http://eu.conecta.it

[Daf 06] Daffara, C. Sustainability of FLOSS-based business models, II
Open Source World Conference, Malaga 2006

[Daf 06-2] Daffara, C. Introducing open source in industrial environments.
3rd CALIBRE workshop

[Daf 07] Daffara, C. Business models in OSS-based companies. Accepted
paper, OSSEMP workshop, Third international conference on
open source. Limerick 2007

[Dal 05] Dalle, J.-M., et al., Advancing Economic Research on the Free
and Open Source Software Mode of Production, in Building Our
Digital Future: Future Economic, Social & Cultural Scenarios
Based On Open Standards, M. Wynants and J. Cornelis, Editors.
2005, Vrjie Universiteit Brussels (VUB) Press: Brussels

[ED 05] Evans Data, Open Source Vision report, 2005

[EKM 05] Eckert D., Koch S., Mitlohner J. Using the Iterated Prisoner's
Dilemma for Explaining the Evolution of Cooperation in Open
Source Communities . Proceedings of the First International
Conference on Open Source Systems , Genova 2005

[Fed 07] Fedora Project Wiki, Licensing.
http://fedoraproject.org/wiki/Licensing

[Fog 05] Fogel, K., Producing Open Source Software: How to Run a
Successful Free Software Project. 2005: O’Reilly

[Forr 07] Forrester consulting, Open Source Software’s Expanding Role in
the Enterprise . March 2007

[Gar 06] Gartner Group, Open source going mainstream. Gartner report,
2006

[Gosh 05] Gosh, et al. Free/Libre/Open Source Software Worldwide impact
study: FLOSSWorld. FLOSSWorld project presentation.
http://www.flossproject.org/papers/20051217/flosswo
rld-intro3.pdf

[Gosh 06] Gosh, et al. Economic impact of FLOSS on innovation and
competitiveness of the EU ICT sector.

 Copyright FLOSSMetrics Consortium
70

http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf
http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf
http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf
http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf
http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf
http://www.flossproject.org/papers/20051217/flossworld-intro3.pdf

Guide for SMEs

Deliverable ID: D8.1.1

Page : 71 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-
flossimpact.pdf

[Hahn 02] Hahn, W.R. (editor), Government policy towards open source
software. AEI-Brookings, 2002.

[HSE 02] UK Health and Safety Executive, Preliminary assessment of
Linux for safety related systems. Research report 011/2002

[IBM 06] IBM, Linux Client Migration Cookbook, Version 2: A Practical
Planning and Implementation Guide for Migrating to Desktop
Linux. Available online at
http://www.redbooks.ibm.com/abstracts/sg246380.html?Open

[IDC 06] IDC, Open Source in Global Software: Market Impact, Disruption,
and Business Models. IDC report, 2006

[INES 06] INES IST project, Final project report.
http://www.euroines.com/down/INES_final_report.pdf

[Inf 07] Infoworld white paper, OPEN SOURCE MANAGEMENT: Trends,
Requirements and Future Needs for the Open Source Enterprise

[Jaak 06] Jaaksi, A. Building consumer products with open source.
LinuxDevices dec. 2006,
http://www.linuxdevices.com/articles/AT7621761066.html

[Jul 06] Jullien N. (ed) New economic models, new software industry
economy. RNTL report

[KBST 06] Germany KBSt, Migration guide.

[Kli 05] Klincewicz, K. Innovativeness of open source software projects.
Technical report, School of Innovation Management, Tokyo
Institute of Technology. 2005

[Mue 07] Mueller, M. Openoffice.org projects by Members,
http://blogs.sun.com/GullFOSS/entry/openoffice_org_projects_
by_members

[OECD 02] OECD, "OECD/Eurostat task force on software measurement in
the
national accounts", Conference of European
Statisticians, Joint ECE/Eurostat/OECD meeting on national
accounts, 2002

 Copyright FLOSSMetrics Consortium
71

http://www.euroines.com/down/INES_final_report.pdf
http://www.euroines.com/down/INES_final_report.pdf
http://www.euroines.com/down/INES_final_report.pdf

Guide for SMEs

Deliverable ID: D8.1.1

Page : 72 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

[Ost 04] Osterwalder A, The business model ontology - a proposition in a
design science approach , PhD Dissertation, University of
Lausanne, Switzerland, 2004

[Ost 05] Osterwalder A, Pigneur Y., E-business models and disruptive
behaviours,
http://www.businessmodeldesign.com/presentations/
PACIS05.ppt

[QSOS 06] QSOS project, Method for Qualification and Selection of Open
Source software (QSOS) version 1.6.

[Raym 00] Raymond, E.S., The Cathedral and the Bazaar, in The Cathedral
and the Bazaar. 2000

[Reas 06a] Reasoning Inc. A Quantitative Analysis of TCP/IP
Implementations in Commercial Software and in the Linux
Kernel.

[Reas 06b] Reasoning Inc. How Open Source and Commercial Software
Compare: Database Implementations in Commercial Software
and in MySQL.

[Rig 06] Rigby P.C., German D.M. A preliminary examination of code
review processes in open source projects. University of Victoria
technical report, 2006,
http://opensource.mit.edu/papers/Rigby2006TR.pdf

[Ros 05] Rosen L., Open source licensing. Prentice Hall, 2005

[Sei 06] Seigo A., The quest for project identity and definition. Keynote
speech, Akademy conference 2006.

[Sch 02] Schiff, A. The Economics of Open Source Software: A Survey of
the Early Literature. Review of Network Economics, 1 (1), March
2002

[Spi 02] Spiller, D. and T. Wichmann, FLOSS 3: Basics of Open Source
Software Markets and Business Models, in FLOSS - Free/Libre
Open Source Software: Survey and Study. Berlecon Research,
Berlin 2002

[Stu 07] Stuermer, M. How money influences open source projects and its
contributors. LinuxTag 2007, Berlin.

 Copyright FLOSSMetrics Consortium
72

http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://conway.isri.cmu.edu/~jdh/OSS-spr-03/readings/schiff_software_mar02.pdf
http://opensource.mit.edu/papers/Rigby2006TR.pdf
http://opensource.mit.edu/papers/Rigby2006TR.pdf
http://opensource.mit.edu/papers/Rigby2006TR.pdf
http://www.businessmodeldesign.com/presentations/PACIS05.ppt
http://www.businessmodeldesign.com/presentations/PACIS05.ppt
http://www.businessmodeldesign.com/presentations/PACIS05.ppt
http://www.businessmodeldesign.com/presentations/PACIS05.ppt
http://www.businessmodeldesign.com/presentations/PACIS05.ppt
http://www.businessmodeldesign.com/presentations/PACIS05.ppt

Guide for SMEs

Deliverable ID: D8.1.1

Page : 73 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

[Suc 04] Succi, Paulson, Eberlein. An Empirical Study of Open-Source
and Closed-Source Software Products, IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, V.30/4, april 2004

[Sun 06] Sun Microsystems, Free and Open Source licensing. White paper,
www.sun.com/software/opensource/whitepapers/Sun_Microsy
stems_OpenSource_Licensing.pdf

[UUS 05] Ueda, M., Uzuki T., Suematsu C. A cluster analysis of open
source licenses. Proceedings of the First International
Conference on Open Source Systems, Genova 2005

[VH 03] Von Hippel, E. and G. von Krogh, Open Source Software and the
“Private-Collective” Innovation Model: Issues for Organizational
Science. Organization Science, 2003. 14(2): p. 209-223

[VH 05] Von Hippel, E. Democratizing innovation. MIT press, 2005

 Copyright FLOSSMetrics Consortium
73

Guide for SMEs

Deliverable ID: D8.1.1

Page : 74 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Appendix 1: estimating the
number of active FLOSS projects

A recurring debate discussion among FLOSS-supporters and
detractors is related to the estimation of the real number of active
FLOSS projects. While it is easy to look at the main repository site
(sourceforge.net) that boasts more than 100.000 projects, it is equally
easy to look in more depth and realize that a significant number of
those projects are really abandoned or have no significant
development.

For the purpose of obtaining some unbiased estimates, we performed
a first search among the main repository sites and FLOSS announce
portals; we also set a strict activity requirement, stately an activity
index from 80 to 100% and at least a file release in the last 6 months.
Of the overall 155959 projects, only 10656 (6.8%) are "active" (with a
somehow very restrictive definition; a more relaxed release period of
1 year shows an active percentage of 9.2% or 14455 projects).

 Copyright FLOSSMetrics Consortium
74

Guide for SMEs

Deliverable ID: D8.1.1

Page : 75 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

However, while Sourceforge can rightly be considered the largest
single repository, it is not the only potential source of projects; there
are many other vertical repositories, among them BerliOS, Savannah,
Gna! and many others, derived both from the original version of the
Sourceforge code and many more based on a rewritten version called
GForge.21

The result summary is:

Repository name Number of projects

All GForge sites22 16776

Berlios Sourcewell 3340

Savannah 2793

Gna! 1039

That gives a total of 23948 projects, to which (using a sampling of 100
projects from each) we have found a similar number of active projects
(between 8% and 10%).

The next step is the estimation of how many projects of the overall
FLOSS landscape are hosted on those sites, and for performing this
estimate we took the entire FreshMeat23 announce database, as
processed by the FLOSSmole project24 and found that the projects that
have an homepage in one of the repository sites are 23% of the total.
This count is however biased by the fact that the probability of a
project to be announced on FreshMeat is not equal for all projects;
that is, english-based and oriented towards a large audience have a
much higher probability to be listed. To take this into account, we
performed a search for non-english based forges, and for software
that is oriented towards a very specific area, using data from past IST
projects like Spirit and AMOS. We have found that non-english

21It has been suggested to the authors that in this way we can end up counting twice those
projects that move from one site to others. The reality is that as the "old" project becomes
inactive, it is removed from the count and so this risk is limited to those that performed the move
in the last 12 months only (as moving is rather uncommon, this is however a very small number
that should not influence the overall percentages).
22As reported in the GForge site count, http://gforge.org/docman/view.php/1/52/gforge-
sites.html
23A popular FLOSS announcement portal. www.freshmeat.net
24a collaborative collection and analysis of FLOSS data, http://ossmole.sourceforge.net/

 Copyright FLOSSMetrics Consortium
75

http://gforge.org/docman/view.php/1/52/gforge-sites.html
http://gforge.org/docman/view.php/1/52/gforge-sites.html
http://gforge.org/docman/view.php/1/52/gforge-sites.html
http://gforge.org/docman/view.php/1/52/gforge-sites.html
http://gforge.org/docman/view.php/1/52/gforge-sites.html
http://gforge.org/docman/view.php/1/52/gforge-sites.html

Guide for SMEs

Deliverable ID: D8.1.1

Page : 76 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

projects are underrepresented in FreshMeat in a significant way, but
as the overall "business-readiness" of those projects is unclear (as for
example there may be no translations available, or be specific to a
single country legal environment) we have ignored them. Vertical
projects are also underrepresented, especially with regard to projects
in scientific and technical areas, where the probability of being
included is around 10 times lower compared to other kind of
software. By using the results from Spirit, a sampling from project
announcements in scientific mailing lists, and some repositories for
the largest or more visible projects (like the CRAN archive, that hosts
libraries and packages for the R language for statistics, that hosts
1195 projects) we have reached a lower bound estimate of around
12000 "vertical" and industry-specific projects.

So, we have an overall lower bound estimate of around 195000
projects, of which we can estimate that 7% are active, leading to
around 13000 active projects. Of those, we can estimate (using data
from Slashdot, FreshMeat and the largest Gforge sites) that 36% fall in
the "stable" or "mature" stage, leading to a total of around 5000
projects that can be considered suitable for an SME, that is with an
active community, stable and with recent releases.

It should be considered that this number is a lower bound, obtained
with slightly severe assumptions; also, this estimate does not try to
assess the number of projects not listed in the announcement sites
(even vertical application portals); this is a deliberate action, as it
would be difficult to estimate the reliability of such a measure, and
because the "findability" of a project and its probability of having a
sustained community participation are lower if it is difficult to find
information on the project in the first place; this means that the
probability of such "out of the bounds" projects would probably be
not a good opportunity for SME adoption in any case.

 Copyright FLOSSMetrics Consortium
76

Guide for SMEs

Deliverable ID: D8.1.1

Page : 77 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

Appendix 2: QSOS assessment
score tables

The data provided is a synthesis of the official QSOS assessment
methodology in its 1.6 revision, available from www.qsos.org, along
with several useful tools to facilitate the measurement and score
collection steps. The axis of evaluation includes criteria to estimate
risks incurred by the user when adopting free or open source
software. Scoring of criteria is done independently of any particular
user's context (the context is considered later in Step 3 –
"Qualification"); criteria are split into five categories:

• Intrinsic durability
• Industrialized solution
• Integration
• Technical adaptability
• Strategy

After a "generic" part, depending on the application area it is possible
to create custom QSOS sheets; in the following example a "groupware"
evaluation is provided.

 Copyright FLOSSMetrics Consortium
77

Guide for SMEs

Deliverable ID: D8.1.1

Page : 78 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
78

Criterion Score 0 Score 1 Score 2
Generic section
Intrinsic durability
Maturity

Age less than 3 months after 3 years

Stability

History

Fork

Adoption

Popularity Very few users identified Detectable use on Internet

References None

Contributing Community

books No book about the software

Development leadership

Leading team More than 5 people

Management style Complete dictatorship Enlightened despotism

Activity

Activity on bugs

Activity on functionalities No or few new functionalities

Activity on releases

if between 3 months and 3
years

Unstable software with
numerous releases or
patches generating side
effects

Stabilized production
release existing but old.
Difficulties to stabilize
developpement releases

Stabilized software.
Releases provide bug fixes
corrections but mainly new
functionalities

Software knows several
problems which can be
prohibitive

No know major problem or
crisis

History of good management
of crisis situations

Software is very likely to be
forked in the future

Software comes from a fork
but has very few chances of
being forked in the future

Software has very little
chance of being forked. It
does not come from a fork
either

Numerous users, numerous
references

Few refences, non critical
usages

Often implemented for critical
applications

No community or without real
activity (forum, mailing list, ...)

Existing community with a
notable activity

Strong community: big
activity on forums, numerous
contributors and advocates

Less than 5 books about the
software are available

More than 5 books about
software are available, in
several languages

1 to 2 individuals involved,
not clearly identified

Between 2 and 5
independent people

Council of architects with
identified leader (e.g: KDE)

Developers, identification,
turnover

Less than 3 developers, not
clearly identified

Between 4 and 7
developers, or more
unidentified developers with
important turnover

More than 7 developers, very
stable team

Slow reactivity in forum or on
mailing list, or nothing
regarding bug fixes in
releases note

Detectable activity but
without process clearly
exposed, loing
reaction/resolution time

Strong reactivity based on
roles and tasks assignment

Evolution of the product
driven by the core team or by
user's request without any
clearly explained process

Tool(s) to manage feature
requests, strong interaction
with roadmap

Very weak activity on both
production and development
releases

Activity on production and
developmenet releases.
Frequent minor releases
(bug fixes)

Important activity with
frequent minor releases
(bugs fixes) and planned
major releases relating to the
roadmap forcast

Guide for SMEs

Deliverable ID: D8.1.1

Page : 79 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
79

Criterion Score 0 Score 1 Score 2
Generic section
Industrialized solution

60% maximum 20% maximum

Services

Training No offer of training identified

Support

Consulting No offer of consulting service

Documentation No user documentation

Quality Assurance

Quality Assurance No QA process

Tools

Independence of
developments

Developments realized at
100% by employees of a
single company

Offer exists but is restricted
geographically and to one
language or is provided by a
single contractor

Rich offers provided by
several contractors, in
serveral languages and split
into modules of gradual
levels

No offer of support except via
public forums and mailing
lists

Offer exists but is provided
by a single contractor without
strong commitment quality of
services

Multiple service providers
with strong commitment (e.g:
guaranteed resolution time)

Offer exists but is restricted
geographically and to one
language or is provided by a
single contractor

Consulting services provided
by different contractors in
serveral languages

Documentation exists but
shifted in time, is restricted to
one language or is poorly
detailed

Documentation always up to
date, translated and possibly
adapted to different target
readers (end user, sysadmin,
manager, ...)

Identifies QA process but not
much formalized and with no
tool

Automatic testing process
included in code's life-cycle
with publication of results

No bug or feature request
management tool

Standard tools provided (for
instance by a hosting forge)
but poorly used

Very active use of tools for
roles/tasks allocation and
progress monitoring

Guide for SMEs

Deliverable ID: D8.1.1

Page : 80 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
80

Criterion Score 0 Score 1 Score 2
Generic section
Packaging
BSD

FreeBSD

Mac OS X

NetBSD

OpenBSD

Linux

Debian

Mandriva

Red Hat

SuSE

Source

Unix

AIX

HP-UX

Solaris

Windows

The software is not
packaged for FreeBSD

A port exists but it has
important issues or it doesn't
have official support

A official port exists in
FreeBSD

The software is not
packaged for Mac OS X

A package exists but it has
important issues or it doesn't
have official support

The software is packaged in
the distribution

The software is not
packaged for NetBSD

A port exists but it has
important issues or it doesn't
have official support

A official port exists in
NetBSD

The software is not
packaged for OpenBSD

A port exists but it has
important issues or it doesn't
have official support

A official port exists in
OpenBSD

The software is not
packaged for Debian

A Debian package exists but
it has important issues or it
doesn't have official support

The software is packaged in
the distribution

The software is not
packaged for Mandriva

A package exists but it has
important issues or it doesn't
have official support

The software is packaged in
the distribution

The software is not
packaged for Red
Hat/Fedora

A package exists but it has
important issues or it doesn't
have official support

The software is packaged in
the distribution

The software is not
packaged for SuSE

A package exists but it has
important issues or it doesn't
have official support

The software is packaged in
the distribution

Software can't be installed
from source without lot of
work

Installation from source is
limited and depends on very
strict conditions (OS, arch,
lib, ...)

Installation from source is
easy

The software is not
packaged for AIX

A package exists but it has
important issues or it doesn't
have official support

A stable package is provided
for AIX

The software is not
packaged for HP-UX

A package exists but it has
important issues or it doesn't
have official support

A stable package is provided
for HP-UX

The software is not
packaged for Solaris

A package exists but it has
important issues or it doesn't
have official support (e.g:
SunFreeware.com)

The software is supported by
Sun for Solaris

The project can't be installed
on Windows

A package exists but it is
limited or has important
issues or just cover some
specific Windows release
(e.g: Windows 2000 and
Windows XP)

Windows is full supported
and a package is provided

Guide for SMEs

Deliverable ID: D8.1.1

Page : 81 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
81

Criterion Score 0 Score 1 Score 2
Generic section
Exploitability

Ease of use, ergonomics

Administration / Monitoring

Technical adaptability

Modularity Monolithic software

Code modification Everything by hand

Code extension

Strategy
License

Permissiveness Very strict license, like GPL

Very strict license, like GPL

Copyright owners

Modification of source code

Roadmap No published roadmap

Sponsor

Strategical independence

Difficult to use, requires an in
depth knowledge of the
software functionality

Austere and very technical
ergonomics

GUI including help functions
and elaborated ergonomics

No administrative or
monitoring functionalities

Existing, functionalities but
uncomplete and or need
improvement

Complete and easy-to-use
administration and
monitoring functionalities.
Possible integration with
external tools (e.g: SNMP,
syslog, ...)

Presence of hight level
modules allowing a first level
of software adaptation

Modular conception,
allowing easy adaptation of
the software by selecting or
creating modules

Recompilation possible but
complex without any tools or
documentation

Recompilation with tools
(e.g: make, ANT, ...) and
documentation provided

Any modification requires
code recompilation

Architecture designed for
static extension but requires
recompilation

Principle of plugin,
architecture designed for
dynamic extension without
recompilation

Moderate permissive license
located between both
extremes (GPL and BSD)
dual-licensing depending on
the type of user (person,
company, ...) or their
activities

Very permissive like BSD or
Apache licenses

Protection against
proprietary forks

Very permissive like BSD or
Apache licenses

Moderate permissive license
located between both
extremes (GPL and BSD),
dual-licensing depending on
the type of user (person,
company, ...) or their activies

Rights held by a few
individuals or entities,
making it easier to change
the license

Rights held by numerous
individuals owning the code
in a homogeneous way,
making relicense very
difficult

Rights held by a legal entity
in whom the community
trusts (e.g: FSF or ASF)

No pratical way to propose
code modification

Tools provided to access
and modify code (like CVS or
SVN) but not really used to
develop the software

The code modification
process is well defined,
exposed and respected,
based on roles assignment

Existing roadmap without
planning

Versionned roadmap, with
planning and measure of
delays

Software has no sponsor, the
core team is not paid

Software has an unique
sponsor who might
determine its strategy

Software is sponsored by
industry

No detectable strategy or
strong dependency on one
unique actor (person,
company, sponsor)

Strategical vision shared
with several other free and
open source projects but
without strong commitment
from copyrights owners

Strong independence of the
code team, legal entity
holding rights, strong
involvement in the
standardization process

Guide for SMEs

Deliverable ID: D8.1.1

Page : 82 of 82

Version: 1.0
Date: Oct. 10 2007

Status : Final
Confid : Public

 Copyright FLOSSMetrics Consortium
82

Criterion Score 0 Score 1 Score 2
groupware-specific
Administration GUI

Web interface No web interface

Console mode Nothing

Stand alone admin tool Nothing

Supported groupware

Calendar no calendar provided

Taskmanager no task manager provided Task manager fully supported

Notemanager no note manager provided

Contact manager can't add contact in the server contact manager fully supported

Standard support

iCalendar over WebDav iCalendar over WebDav works

CalDav CalDav is not supported CalDav is partially supported CalDav works
Groupdav Groupdav is not supported Groupdav is partially supported Groupdav works
SyncML SyncML is not supported SyncML is partially supported SyncML works

Supported client

Web client Web interface doesn't exist

Microsoft Outlook Microsoft Outlook not supported

Novell Evolution Novell Evolution can't be used Novell Evolution fully supported

KDE Fully support of KDE

Apple iCal Apple's iCal can't be used Apple's iCal fully supported

Performance

Load balancing Loadblalancing just works

Code quality

Remote access API No remote remote API

unified API

an web interface is provided but
limited

everything can be completed
with the Web interface

Some tools exists, but limited.
No text based configuration file
or not human readable (e.g:
complexe XML)

Total access to the server
configuration with powerful tools
and well designer text
configuration file

A limited tool exist allow user to
do specific operation

A powerful tool give access to
every major features of the
server

a calendar is provided, but leak
some important features

a well integrated calendar is
provided

a task manager is provided but
leak some important features
a limited note manager is
provided

a well integred note manager is
provided

contact manager exists but is
limited

iCalendar over WebDav is not
supported

iCalendar over WebDav is
partially supported

Web interface is provided but
limited or need some work for its
integration

Web interface directly provided
with the project

Microsoft Outlook connector is
provided but have some
limitation

a free Microsoft Outlook
connector

Novell Evolution can be used but
with some limitation

KDE PIM (Korganizer, kmail, ...)
can't be used with this
groupware

KDE can be used but with some
limitation

Apple's iCal works but with
some limitation

This software can't be
loadbalancer

Part of the installation can be
splited but it keeps important
bottleneck

remote API (SOAP, XML/RPC,
REST) exists but is limited or
buggy

powerful remote API (SOAP,
XML/RPC, REST) provided

No API provided to extend the
server, or very limited and not
documented

An API is provided but limited of
not fully documented

Well documented and complet
API

	Introduction
	1. What's Free/Libre/Open Source Software?
	FLOSS1 as a licensing model
	FLOSS as a development model

	2. Ten myths about free/libre open source software
	Myth #1: It's a Linux-vs-Windows thing.
	Myth #2: FLOSS is not reliable or supported.
	Myth #3: Big companies don't use FLOSS.
	Myth #4: FLOSS is hostile to intellectual property.
	Myth #5: FLOSS is all about licenses.
	Myth #6: If I give away my software to the FLOSS community, thousands of developers will suddenly start working for me for nothing.
	Myth #7: FLOSS only matters to programmers, since most users never look under the hood anyway.
	Myth #8: There is no money to be made on FLOSS.
	Myth #9: The FLOSS movement isn't sustainable, since people will stop developing free software once they see others making lots of money from their efforts.
	Myth #10: FLOSS is playing catch-up to Microsoft and the commercial world.

	3. Basic FLOSS adoption models
	The FLOSS adoption ladder

	4. Finding and selecting software
	5. Best practices for FLOSS adoption
	Management guidelines
	Be sure of management commitment to the transition
	Prepare a clear overview of what is expected from the migration or adoption, including measurable benchmarks
	Make sure that the timetable is realistic
	Review the current software/IT procurement and development procedure
	Seek out advice or search for information on similar transitions
	Avoid “big switch” transition, and favor incremental migrations
	Assign at least a person to interacting with the OSS community or the OSS vendor, and try to find online information sources
	Technical guidelines
	Understand the way OSS is developed
	Create a complete survey of software and hardware that will be affected by the migration, and what functionality the company is looking for
	Use the flexibility of OSS to create local adaptations
	There is much more software available than what is installed by default
	In selecting packages, always favor stability over functionality
	Design the workflow support infrastructure to reduce the number of “impedance mismatches”
	Introduce a trouble ticket system
	Compile and update a detailed migration workbook
	Social guidelines
	Provide background information on OSS
	Don't force the change on the users, provide explanations
	Use the migration as an occasion to improve users skill
	Make it easy to experiment and learn

	6. FLOSS-based business models
	Externally funded ventures
	"Needed improvement" funding
	Indirect funding / Loss-leader
	Internal use
	"Best knowledge here'' without constraints
	"Best knowledge here" with constraints
	"Best code here" without constraints
	"Best code here" with constraints/Time-decaying licenses
	Dual licensing
	Unfunded developments
	Specialized Service-based business models
	Software selection support
	Installation support
	Integration support
	Technical suitability certification
	Legal certification
	Training
	Ongoing maintenance and support contracts
	Migration services
	Mediation services
	Custom development
	Assessment of FLOSS business models usage

	Bibliography
	Appendix 1: estimating the number of active FLOSS projects
	Appendix 2: QSOS assessment score tables

